Spatial Decay of Time-Dependent Oseen Flows

We consider an initial-boundary value problem for the time-dependent Oseen system in a three-dimensional exterior domain. We show that weak solutions of this problem may be represented by a sum of volume and single layer potentials. This representation is then used in order to study spatial decay of weak solutions.

[1]  Takayuki Kobayashi,et al.  On the Oseen equation in the three dimensional exterior domains , 1998 .

[2]  Shuji Takahashi,et al.  A weighted equation approach to decay rate estimates for the Navier-Stokes equations , 1999 .

[3]  Y. Shibata,et al.  On the Rate of Decay of the Oseen Semigroup in Exterior Domains and its Application to Navier–Stokes Equation , 2005 .

[4]  Ryuichi Mizumachi On the asymptotic behavior of incompressible viscous fluid motions past bodies , 1984 .

[5]  R. Farwig The stationary exterior 3 D-problem of Oseen and Navier-Stokes equations in anisotropically weighted Sobolev spaces , 1992 .

[6]  G. Galdi An Introduction to the Mathematical Theory of the Navier-Stokes Equations : Volume I: Linearised Steady Problems , 1994 .

[7]  A. Friedman Partial Differential Equations of Parabolic Type , 1983 .

[8]  V. A. Solonnikov,et al.  Estimates of the Solutions of a Nonstationary Linearized System of Navier-Stokes Equations , 1968 .

[9]  Anisotropic Elliptic Equations,et al.  A PRIORI ESTIMATES FOR SOLUTIONS OF , 2009 .

[10]  M. Fowler,et al.  Function Spaces , 2022 .

[11]  P. Deuring On boundary-driven time-dependent Oseen flows , 2008 .

[12]  P. Deuring The Single-Layer Potential Associated with the Time-dependent Oseen System , 2006 .

[13]  Всеволод Алексеевич Солонников,et al.  Об оценках решений нестационарной задачи Стокса в анизотропных пространствах С. Л. Соболева и об оценках резольвенты оператора Стокса@@@On estimates of solutions of the non-stationary Stokes problem in anisotropic Sobolev spaces and on estimates for the resolvent of the Stokes operator , 2003 .

[14]  Y. Shibata,et al.  Local energy decay of solutions to the oseen equation in the exterior domains , 2004 .

[15]  Zhongwei Shen,et al.  Boundary value problems for parabolic Lamé systems and a nonstationary linearized system of Navier-Stokes equations in Lipschitz cylinders , 1991 .

[16]  G. Knightly Some decay properties of solutions of the Navier-Stokes equations , 1980 .

[17]  P. Deuring,et al.  Exterior stationary Navier‐Stokes flows in 3D with non‐zero velocity at infinity: approximation by flows in bounded domains , 2004 .

[18]  G. Verchota Layer potentials and regularity for the Dirichlet problem for Laplace's equation in Lipschitz domains , 1984 .

[19]  R. Farwig A variational approach in weighted Sobolev spaces to the operator −Δ+∂/∂x1 in exterior domains of ℝ3 , 1992 .

[20]  Stability of a finite element method for 3D exterior stationary Navier-Stokes flows , 2007 .

[21]  Hantaek Bae Navier-Stokes equations , 1992 .

[22]  V. A. Solonnikov,et al.  Estimates for solutions of nonstationary Navier-Stokes equations , 1977 .

[23]  Y. Shibata On an exterior initial boundary value problem for Navier-Stokes equations , 1999 .

[24]  A. Novotný,et al.  Estimates of Oseen kernels in weighted L^p spaces , 2001 .

[25]  P. Deuring Exterior Stationary Navier–Stokes Flows in 3D with Nonzero Velocity at Infinity: Asymptotic Behavior of the Second Derivatives of the Velocity , 2005 .