Emerging targets in osteoarthritis therapy.

[1]  Yangzi Jiang,et al.  Origin and function of cartilage stem/progenitor cells in osteoarthritis , 2015, Nature Reviews Rheumatology.

[2]  M. Karsdal,et al.  Treatment of symptomatic knee osteoarthritis with oral salmon calcitonin: results from two phase 3 trials. , 2015, Osteoarthritis and cartilage.

[3]  G. Herrero-Beaumont,et al.  TLR4 signalling in osteoarthritis—finding targets for candidate DMOADs , 2015, Nature Reviews Rheumatology.

[4]  M. Koenders,et al.  TGF-β is a potent inducer of Nerve Growth Factor in articular cartilage via the ALK5-Smad2/3 pathway. Potential role in OA related pain? , 2015, Osteoarthritis and cartilage.

[5]  Georg Schett,et al.  Signature of circulating microRNAs in osteoarthritis. , 2015, Annals of the rheumatic diseases.

[6]  B. Cronstein,et al.  Direct or indirect stimulation of adenosine A2A receptors enhances bone regeneration as well as bone morphogenetic protein‐2 , 2015, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[7]  D. Spray,et al.  Green tea polyphenol treatment is chondroprotective, anti-inflammatory and palliative in a mouse posttraumatic osteoarthritis model , 2014, Arthritis Research & Therapy.

[8]  J. Kim,et al.  Intra-articular delivery of kartogenin-conjugated chitosan nano/microparticles for cartilage regeneration. , 2014, Biomaterials.

[9]  V. Geoffroy,et al.  Dkk‐1–Mediated Inhibition of Wnt Signaling in Bone Ameliorates Osteoarthritis in Mice , 2014, Arthritis & rheumatology.

[10]  G. Burmester,et al.  Hydroxychloroquine in patients with inflammatory and erosive osteoarthritis of the hands (OA TREAT): study protocol for a randomized controlled trial , 2014, Trials.

[11]  D. Walsh,et al.  Structural Associations of Symptomatic Knee Osteoarthritis , 2014, Arthritis & rheumatology.

[12]  K. Jacobson,et al.  A3 Adenosine Receptor Allosteric Modulator Induces an Anti-Inflammatory Effect: In Vivo Studies and Molecular Mechanism of Action , 2014, Mediators of inflammation.

[13]  Jae-Wook Jeong,et al.  Disturbed Cartilage and Joint Homeostasis Resulting From a Loss of Mitogen‐Inducible Gene 6 in a Mouse Model of Joint Dysfunction , 2014, Arthritis & rheumatology.

[14]  F. Dell’Accio,et al.  Analyses on the mechanisms that underlie the chondroprotective properties of calcitonin. , 2014, Biochemical pharmacology.

[15]  V. Kraus,et al.  Biomarkers and proteomic analysis of osteoarthritis. , 2014, Matrix biology : journal of the International Society for Matrix Biology.

[16]  Weikai Zhang,et al.  Bortezomib prevents the expression of MMP-13 and the degradation of collagen type 2 in human chondrocytes. , 2014, Biochemical and biophysical research communications.

[17]  Masato Sato,et al.  Bevacizumab, an anti-vascular endothelial growth factor antibody, inhibits osteoarthritis , 2014, Arthritis Research & Therapy.

[18]  R. Loeser Integrins and chondrocyte–matrix interactions in articular cartilage , 2014, Matrix biology : journal of the International Society for Matrix Biology.

[19]  D. Patra,et al.  Cartilage-Specific Ablation of Site-1 Protease in Mice Results in the Endoplasmic Reticulum Entrapment of Type IIB Procollagen and Down-Regulation of Cholesterol and Lipid Homeostasis , 2014, PloS one.

[20]  F. Luyten,et al.  A homeostatic function of CXCR2 signalling in articular cartilage , 2014, Annals of the rheumatic diseases.

[21]  S. Goldring,et al.  A hyaluronic acid-salmon calcitonin conjugate for the local treatment of osteoarthritis: chondro-protective effect in a rabbit model of early OA. , 2014, Journal of controlled release : official journal of the Controlled Release Society.

[22]  W. Yin,et al.  Aging and Oxidative Stress Reduce the Response of Human Articular Chondrocytes to Insulin‐like Growth Factor 1 and Osteogenic Protein 1 , 2014, Arthritis & rheumatology.

[23]  A. Mobasheri,et al.  Peripheral Calcitonin Gene-Related Peptide Receptor Activation and Mechanical Sensitization of the Joint in Rat Models of Osteoarthritis Pain , 2014, Arthritis & rheumatology.

[24]  F. Berenbaum,et al.  Protective role of frizzled-related protein B on matrix metalloproteinase induction in mouse chondrocytes , 2014, Arthritis Research & Therapy.

[25]  S. Oyadomari,et al.  Endoplasmic reticulum stress-induced apoptosis contributes to articular cartilage degeneration via C/EBP homologous protein. , 2014, Osteoarthritis and cartilage.

[26]  F. Eckstein,et al.  Intraarticular Sprifermin (Recombinant Human Fibroblast Growth Factor 18) in Knee Osteoarthritis: A Randomized, Double‐Blind, Placebo‐Controlled Trial , 2014, Arthritis & rheumatology.

[27]  Y. Henrotin Does signaling pathway inhibition hold therapeutic promise for osteoarthritis? , 2014, Joint, bone, spine : revue du rhumatisme.

[28]  A. So,et al.  Dispensable role of myeloid differentiation primary response gene 88 (MyD88) and MyD88-dependent toll-like receptors (TLRs) in a murine model of osteoarthritis. , 2014, Joint, bone, spine : revue du rhumatisme.

[29]  Zhen-Zhong Xu,et al.  Emerging targets in neuroinflammation-driven chronic pain , 2014, Nature Reviews Drug Discovery.

[30]  A. Uitterlinden,et al.  Genome-wide association and functional studies identify a role for IGFBP3 in hip osteoarthritis , 2014, Annals of the rheumatic diseases.

[31]  R. Baron,et al.  Osteoarthritis pain: nociceptive or neuropathic? , 2014, Nature Reviews Rheumatology.

[32]  L. Reynard,et al.  CpG methylation regulates allelic expression of GDF5 by modulating binding of SP1 and SP3 repressor proteins to the osteoarthritis susceptibility SNP rs143383 , 2014, Human Genetics.

[33]  S. Honsawek,et al.  Plasma and synovial fluid sclerostin are inversely associated with radiographic severity of knee osteoarthritis. , 2014, Clinical biochemistry.

[34]  Richard T. Lee,et al.  Targeted Delivery to Cartilage Is Critical for In Vivo Efficacy of Insulin‐like Growth Factor 1 in a Rat Model of Osteoarthritis , 2014, Arthritis & rheumatology.

[35]  Lin Xu,et al.  Induction of high temperature requirement A1, a serine protease, by TGF-beta1 in articular chondrocytes of mouse models of OA. , 2014, Histology and histopathology.

[36]  T. Minashima,et al.  Lithium Protects Against Cartilage Degradation in Osteoarthritis , 2014, Arthritis & rheumatology.

[37]  W. B. van den Berg,et al.  Canonical Wnt signaling skews TGF-β signaling in chondrocytes towards signaling via ALK1 and Smad 1/5/8. , 2014, Cellular signalling.

[38]  Simon W. Jones,et al.  The hallmarks of osteoarthritis and the potential to develop personalised disease-modifying pharmacological therapeutics. , 2014, Osteoarthritis and cartilage.

[39]  L. Miller,et al.  Open Access Journal of Sports Medicine Dovepress Post-traumatic Knee Osteoarthritis in the Young Patient: Therapeutic Dilemmas and Emerging Technologies , 2022 .

[40]  E. Lewiecki Role of sclerostin in bone and cartilage and its potential as a therapeutic target in bone diseases , 2014, Therapeutic advances in musculoskeletal disease.

[41]  M. Kloppenburg Hand osteoarthritis—nonpharmacological and pharmacological treatments , 2014, Nature Reviews Rheumatology.

[42]  A. Noël,et al.  Gene Expression Pattern of Cells From Inflamed and Normal Areas of Osteoarthritis Synovial Membrane , 2014, Arthritis & rheumatology.

[43]  A. Hofman,et al.  Assessment of Osteoarthritis Candidate Genes in a Meta-Analysis of Nine Genome-Wide Association Studies , 2014, Arthritis & rheumatology.

[44]  W. B. van den Berg,et al.  Inhibition of TAK1 and/or JAK can rescue impaired chondrogenic differentiation of human mesenchymal stem cells in osteoarthritis-like conditions. , 2014, Tissue engineering. Part A.

[45]  J. Pelletier,et al.  Cartilage-specific deletion of mTOR upregulates autophagy and protects mice from osteoarthritis , 2014, Annals of the rheumatic diseases.

[46]  L. Setton,et al.  In Vivo Luminescence Imaging of NF‐κB Activity and Serum Cytokine Levels Predict Pain Sensitivities in a Rodent Model of Osteoarthritis , 2014, Arthritis & rheumatology.

[47]  M. Nevitt,et al.  Synovitis in Knee Osteoarthritis Assessed by Contrast-enhanced Magnetic Resonance Imaging (MRI) is Associated with Radiographic Tibiofemoral Osteoarthritis and MRI-detected Widespread Cartilage Damage: The MOST Study , 2014, The Journal of Rheumatology.

[48]  Song Ho Chang,et al.  Identification of Fibroblast Growth Factor-18 as a Molecule to Protect Adult Articular Cartilage by Gene Expression Profiling* , 2014, The Journal of Biological Chemistry.

[49]  R. Boot-Handford,et al.  Abnormal Chondrocyte Apoptosis in the Cartilage Growth Plate is Influenced by Genetic Background and Deletion of CHOP in a Targeted Mouse Model of Pseudoachondroplasia , 2014, PloS one.

[50]  Jin-Hong Kim,et al.  Regulation of the Catabolic Cascade in Osteoarthritis by the Zinc-ZIP8-MTF1 Axis , 2014, Cell.

[51]  M. Kurosaka,et al.  PTEN regulates matrix synthesis in adult human chondrocytes under oxidative stress , 2014, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[52]  R. Jiang,et al.  ATF6 upregulates XBP1S and inhibits ER stress-mediated apoptosis in osteoarthritis cartilage. , 2014, Cellular signalling.

[53]  Katherine C. Hall,et al.  Lack of ADAM10 in endothelial cells affects osteoclasts at the chondro‐osseus junction , 2014, Journal of Orthopaedic Research.

[54]  S. Abramson,et al.  TSG-6 activity as a novel biomarker of progression in knee osteoarthritis. , 2014, Osteoarthritis and cartilage.

[55]  Di Huang,et al.  Endoplasmic Reticulum Stress-Unfolding Protein Response-Apoptosis Cascade Causes Chondrodysplasia in a col2a1 p.Gly1170Ser Mutated Mouse Model , 2014, PloS one.

[56]  Farshid Guilak,et al.  TRPV4-mediated mechanotransduction regulates the metabolic response of chondrocytes to dynamic loading , 2014, Proceedings of the National Academy of Sciences.

[57]  W. Robinson,et al.  Brief Report: Carboxypeptidase B Serves as a Protective Mediator in Osteoarthritis , 2014, Arthritis & rheumatology.

[58]  R. Terkeltaub,et al.  C/EBP homologous protein drives pro-catabolic responses in chondrocytes , 2013, Arthritis Research & Therapy.

[59]  M. Greenblatt,et al.  NFATc1 and NFATc2 repress spontaneous osteoarthritis , 2013, Proceedings of the National Academy of Sciences.

[60]  S. Mohan,et al.  Proteomic profiling and functional characterization of early and late shoulder osteoarthritis , 2013, Arthritis Research & Therapy.

[61]  A. Mobasheri The Future of Osteoarthritis Therapeutics: Emerging Biological Therapy , 2013, Current Rheumatology Reports.

[62]  G. Dubyak,et al.  The progressive ankylosis gene product ANK regulates extracellular ATP levels in primary articular chondrocytes , 2013, Arthritis Research & Therapy.

[63]  A. Gonzalez,et al.  Osteoarthritis year 2013 in review: genetics and genomics. , 2013, Osteoarthritis and cartilage.

[64]  F. Lafeber,et al.  Osteoarthritis year 2013 in review: biomarkers; reflecting before moving forward, one step at a time. , 2013, Osteoarthritis and cartilage.

[65]  L. Reynard,et al.  Insights from human genetic studies into the pathways involved in osteoarthritis , 2013, Nature Reviews Rheumatology.

[66]  R. O’Keefe,et al.  RBP-Jκ-dependent Notch signaling is required for murine articular cartilage and joint maintenance. , 2013, Arthritis and rheumatism.

[67]  F. Berenbaum,et al.  Homeostatic Mechanisms in Articular Cartilage and Role of Inflammation in Osteoarthritis , 2013, Current Rheumatology Reports.

[68]  A. Mobasheri The Future of Osteoarthritis Therapeutics: Targeted Pharmacological Therapy , 2013, Current Rheumatology Reports.

[69]  M. D. de Andrés,et al.  Nitric oxide compounds have different effects profiles on human articular chondrocyte metabolism , 2013, Arthritis Research & Therapy.

[70]  F. Flamigni,et al.  IKKα/CHUK Regulates Extracellular Matrix Remodeling Independent of Its Kinase Activity to Facilitate Articular Chondrocyte Differentiation , 2013, PloS one.

[71]  J. Katz,et al.  The influence of synovial inflammation and hyperplasia on symptomatic outcomes up to 2 years post-operatively in patients undergoing partial meniscectomy. , 2013, Osteoarthritis and cartilage.

[72]  Magnus Rattray,et al.  The Circadian Clock in Murine Chondrocytes Regulates Genes Controlling Key Aspects of Cartilage Homeostasis , 2013, Arthritis and rheumatism.

[73]  D. Patra,et al.  Transcriptome analysis of injured human meniscus reveals a distinct phenotype of meniscus degeneration with aging. , 2013, Arthritis and rheumatism.

[74]  D. Hunter,et al.  Post-traumatic osteoarthritis: from mouse models to clinical trials , 2013, Nature Reviews Rheumatology.

[75]  C. Cooper,et al.  Value of biomarkers in osteoarthritis: current status and perspectives , 2013, Annals of the rheumatic diseases.

[76]  R. Terkeltaub,et al.  Linked decreases in liver kinase B1 and AMP-activated protein kinase activity modulate matrix catabolic responses to biomechanical injury in chondrocytes , 2013, Arthritis Research & Therapy.

[77]  Leslie J Crofford,et al.  Use of NSAIDs in treating patients with arthritis , 2013, Arthritis Research & Therapy.

[78]  M. Tortorella,et al.  Genetically Engineered Mouse Models Reveal the Importance of Proteases as Osteoarthritis Drug Targets , 2013, Current Rheumatology Reports.

[79]  P. Richette,et al.  Biologic agents in osteoarthritis: hopes and disappointments , 2013, Nature Reviews Rheumatology.

[80]  F Eckstein,et al.  Imaging biomarker validation and qualification report: sixth OARSI Workshop on Imaging in Osteoarthritis combined with third OA Biomarkers Workshop. , 2013, Osteoarthritis and cartilage.

[81]  J. Koziol,et al.  Glucosamine activates autophagy in vitro and in vivo. , 2013, Arthritis and rheumatism.

[82]  K. Tsai,et al.  Advanced Glycation End Products Induce Peroxisome Proliferator-Activated Receptor γ Down-Regulation-Related Inflammatory Signals in Human Chondrocytes via Toll-Like Receptor-4 and Receptor for Advanced Glycation End Products , 2013, PloS one.

[83]  Manuel Serrano,et al.  The Hallmarks of Aging , 2013, Cell.

[84]  Katherine C. Hall,et al.  ADAM17 Controls Endochondral Ossification by Regulating Terminal Differentiation of Chondrocytes , 2013, Molecular and Cellular Biology.

[85]  N. Lane,et al.  To Wnt or not to Wnt: the bone and joint health dilemma , 2013, Nature Reviews Rheumatology.

[86]  L. Reynard,et al.  The Identification of Trans-acting Factors That Regulate the Expression of GDF5 via the Osteoarthritis Susceptibility SNP rs143383 , 2013, PLoS genetics.

[87]  F. Beier,et al.  TGF-β and osteoarthritis—the good and the bad , 2013, Nature Medicine.

[88]  T. Matsushita,et al.  Disruption of Sirt1 in chondrocytes causes accelerated progression of osteoarthritis under mechanical stress and during ageing in mice , 2013, Annals of the rheumatic diseases.

[89]  L. Riley,et al.  Inhibition of TGF-β signaling in mesenchymal stem cells of subchondral bone attenuates osteoarthritis , 2013, Nature Medicine.

[90]  T. Matsushita,et al.  The overexpression of SIRT1 inhibited osteoarthritic gene expression changes induced by interleukin‐1β in human chondrocytes , 2013, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[91]  H. An,et al.  Fibroblast growth factor control of cartilage homeostasis , 2013, Journal of cellular biochemistry.

[92]  J. Pelletier,et al.  Adult cartilage-specific peroxisome proliferator-activated receptor gamma knockout mice exhibit the spontaneous osteoarthritis phenotype. , 2013, The American journal of pathology.

[93]  Mary F. Lopez,et al.  Proteomic analysis of synovial fluid from the osteoarthritic knee: comparison with transcriptome analyses of joint tissues. , 2013, Arthritis and rheumatism.

[94]  K. Johnson A stem cell-based approach to cartilage repair , 2013 .

[95]  R. Liu-Bryan Synovium and the Innate Inflammatory Network in Osteoarthritis Progression , 2013, Current Rheumatology Reports.

[96]  B. Dawson,et al.  Proteoglycan 4 Expression Protects Against the Development of Osteoarthritis , 2013, Science Translational Medicine.

[97]  R. Black,et al.  Sclerostin is expressed in articular cartilage but loss or inhibition does not affect cartilage remodeling during aging or following mechanical injury. , 2013, Arthritis and rheumatism.

[98]  J. Campisi,et al.  Cellular senescence and the senescent secretory phenotype: therapeutic opportunities. , 2013, The Journal of clinical investigation.

[99]  G. Valesini,et al.  Cartilage as a target of autoimmunity: a thin layer. , 2013, Autoimmunity reviews.

[100]  Sang-Youel Park,et al.  SIRT1, a class III histone deacetylase, regulates TNF-α-induced inflammation in human chondrocytes. , 2013, Osteoarthritis and cartilage.

[101]  A. Haseeb,et al.  Immunopathogenesis of osteoarthritis. , 2013, Clinical immunology.

[102]  H. Roach,et al.  Regulated Transcription of Human Matrix Metalloproteinase 13 (MMP13) and Interleukin-1β (IL1B) Genes in Chondrocytes Depends on Methylation of Specific Proximal Promoter CpG Sites* , 2013, The Journal of Biological Chemistry.

[103]  Roland Baron,et al.  WNT signaling in bone homeostasis and disease: from human mutations to treatments , 2013, Nature Medicine.

[104]  J. Buckwalter,et al.  Mechanical stress and ATP synthesis are coupled by mitochondrial oxidants in articular cartilage , 2013, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[105]  Robert W. Taylor,et al.  Mitochondrial dysfunction in osteoarthritis is associated with down-regulation of superoxide dismutase 2. , 2013, Arthritis and rheumatism.

[106]  A. Içağasioğlu,et al.  Effects of calcitonin on knee osteoarthritis and quality of life , 2013, Rheumatology International.

[107]  H. Akiyama,et al.  Notch signaling in chondrocytes modulates endochondral ossification and osteoarthritis development , 2013, Proceedings of the National Academy of Sciences.

[108]  P. Conaghan Osteoarthritis in 2012: Parallel evolution of OA phenotypes and therapies , 2013, Nature Reviews Rheumatology.

[109]  H. Im,et al.  MMP13 is a critical target gene during the progression of osteoarthritis , 2013, Arthritis Research & Therapy.

[110]  T. Alliston,et al.  Load Regulates Bone Formation and Sclerostin Expression through a TGFβ-Dependent Mechanism , 2013, PloS one.

[111]  Jonathan Samuels,et al.  Prognostic biomarkers in osteoarthritis , 2013, Current opinion in rheumatology.

[112]  L. Pulsatelli,et al.  New findings in osteoarthritis pathogenesis: therapeutic implications , 2013, Therapeutic advances in chronic disease.

[113]  A Nakajima,et al.  Angiogenic activity of subchondral bone during the progression of osteoarthritis in a rabbit anterior cruciate ligament transection model. , 2012, Osteoarthritis and cartilage.

[114]  L. White,et al.  Serum non-coding RNAs as biomarkers for osteoarthritis progression after ACL injury. , 2012, Osteoarthritis and cartilage.

[115]  J. Schoones,et al.  Synovial inflammation, immune cells and their cytokines in osteoarthritis: a review. , 2012, Osteoarthritis and cartilage.

[116]  T. Vincent Explaining the fibroblast growth factor paradox in osteoarthritis: lessons from conditional knockout mice. , 2012, Arthritis and rheumatism.

[117]  Richard J. Miller,et al.  CCR2 chemokine receptor signaling mediates pain in experimental osteoarthritis , 2012, Proceedings of the National Academy of Sciences.

[118]  A. Blom,et al.  The C-Type Lectin of the Aggrecan G3 Domain Activates Complement , 2012, PloS one.

[119]  A. Silman,et al.  Mapping pathogenesis of arthritis through small animal models. , 2012, Rheumatology.

[120]  David B. Burr,et al.  Bone remodelling in osteoarthritis , 2012, Nature Reviews Rheumatology.

[121]  M. Hirata,et al.  A novel disease-modifying osteoarthritis drug candidate targeting Runx1 , 2012, Annals of the rheumatic diseases.

[122]  Ruth Nussinov,et al.  Structure and dynamics of molecular networks: A novel paradigm of drug discovery. A comprehensive review , 2012, Pharmacology & therapeutics.

[123]  W. B. van den Berg,et al.  Enhanced suppressor of cytokine signaling 3 in arthritic cartilage dysregulates human chondrocyte function. , 2012, Arthritis and rheumatism.

[124]  A. Hofman,et al.  Gremlin 1, frizzled-related protein, and Dkk-1 are key regulators of human articular cartilage homeostasis. , 2012, Arthritis and rheumatism.

[125]  J. Timmons,et al.  Time-series transcriptional profiling yields new perspectives on susceptibility to murine osteoarthritis. , 2012, Arthritis and rheumatism.

[126]  E. Williams,et al.  High resolution micro arthrography of hard and soft tissues in a murine model. , 2012, Osteoarthritis and cartilage.

[127]  F. Blanco,et al.  Mitochondrial dysfunction increases inflammatory responsiveness to cytokines in normal human chondrocytes. , 2012, Arthritis and rheumatism.

[128]  Frances M D Henson,et al.  The effect of recombinant human fibroblast growth factor‐18 on articular cartilage following single impact load , 2012, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[129]  J. Chun,et al.  Dkk-1 expression in chondrocytes inhibits experimental osteoarthritic cartilage destruction in mice. , 2012, Arthritis and rheumatism.

[130]  Bin Wang,et al.  Elevated cross-talk between subchondral bone and cartilage in osteoarthritic joints. , 2012, Bone.

[131]  Jos W. M. van der Meer,et al.  Treating inflammation by blocking interleukin-1 in a broad spectrum of diseases , 2012, Nature Reviews Drug Discovery.

[132]  S. Goldring,et al.  The role of synovitis in osteoarthritis pathogenesis. , 2012, Bone.

[133]  D. Walsh,et al.  Osteochondral alterations in osteoarthritis. , 2012, Bone.

[134]  Gunwoo Kim,et al.  Transforming growth factor alpha controls the transition from hypertrophic cartilage to bone during endochondral bone growth. , 2012, Bone.

[135]  R. Terkeltaub,et al.  The growing array of innate inflammatory ignition switches in osteoarthritis. , 2012, Arthritis and rheumatism.

[136]  T. Glant,et al.  Synovial fluid from patients with early osteoarthritis modulates fibroblast-like synoviocyte responses to toll-like receptor 4 and toll-like receptor 2 ligands via soluble CD14. , 2012, Arthritis and rheumatism.

[137]  N. Oreiro,et al.  Differential protein profiling of synovial fluid from rheumatoid arthritis and osteoarthritis patients using LC-MALDI TOF/TOF. , 2012, Journal of proteomics.

[138]  S. Goldring,et al.  Osteoarthritis: a disease of the joint as an organ. , 2012, Arthritis and rheumatism.

[139]  T. Matsushita,et al.  Autophagy modulates osteoarthritis-related gene expression in human chondrocytes. , 2012, Arthritis and rheumatism.

[140]  L. Duong,et al.  Inhibition of cathepsin K reduces cartilage degeneration in the anterior cruciate ligament transection rabbit and murine models of osteoarthritis. , 2012, Bone.

[141]  D. Iliopoulos,et al.  Central Role of SREBP-2 in the Pathogenesis of Osteoarthritis , 2012, PloS one.

[142]  Charles E McCulloch,et al.  Variant alleles of the Wnt antagonist FRZB are determinants of hip shape and modify the relationship between hip shape and osteoarthritis. , 2012, Arthritis and rheumatism.

[143]  F. Dell’Accio,et al.  Decreased levels of nucleotide pyrophosphatase phosphodiesterase 1 are associated with cartilage calcification in osteoarthritis and trigger osteoarthritic changes in mice , 2012, Annals of the rheumatic diseases.

[144]  A. Salminen,et al.  AMP-activated protein kinase (AMPK) controls the aging process via an integrated signaling network , 2012, Ageing Research Reviews.

[145]  M. Lotz,et al.  Autophagy: a new therapeutic target in cartilage injury and osteoarthritis. , 2012, The Journal of the American Academy of Orthopaedic Surgeons.

[146]  Robert Clarke,et al.  Guidelines for the use and interpretation of assays for monitoring autophagy , 2012 .

[147]  D. D’Lima,et al.  Mechanical injury suppresses autophagy regulators and pharmacologic activation of autophagy results in chondroprotection. , 2012, Arthritis and rheumatism.

[148]  J. Takahashi,et al.  Regulation of Circadian Behavior and Metabolism by Synthetic REV-ERB Agonists , 2012, Nature.

[149]  R. Brophy,et al.  Molecular analysis of age and sex-related gene expression in meniscal tears with and without a concomitant anterior cruciate ligament tear. , 2012, The Journal of bone and joint surgery. American volume.

[150]  P. D. Kraan,et al.  Chondrocyte hypertrophy and osteoarthritis: role in initiation and progression of cartilage degeneration? , 2012 .

[151]  Kozo Nakamura,et al.  C/EBPβ and RUNX2 cooperate to degrade cartilage with MMP-13 as the target and HIF-2α as the inducer in chondrocytes. , 2012, Human molecular genetics.

[152]  Cristina Ruiz-Romero,et al.  Osteoarthritis: Metabolomic characterization of metabolic phenotypes in OA , 2012, Nature Reviews Rheumatology.

[153]  A. Ekici,et al.  Molecular differentiation between osteophytic and articular cartilage--clues for a transient and permanent chondrocyte phenotype. , 2012, Osteoarthritis and cartilage.

[154]  M. Goldring,et al.  Epigenomic and microRNA-mediated regulation in cartilage development, homeostasis, and osteoarthritis. , 2012, Trends in molecular medicine.

[155]  A. Blom,et al.  Serum COMP-C3b complexes in rheumatic diseases and relation to anti-TNF-α treatment , 2012, Arthritis Research & Therapy.

[156]  C. Sanchez,et al.  Increased apoptotic chondrocytes in articular cartilage from adult heterozygous SirT1 mice , 2012, Annals of the rheumatic diseases.

[157]  Wolfgang Baum,et al.  Blockade of the hedgehog pathway inhibits osteophyte formation in arthritis , 2012, Annals of the rheumatic diseases.

[158]  L. Sandell Etiology of osteoarthritis: genetics and synovial joint development , 2012, Nature Reviews Rheumatology.

[159]  A. Cuervo,et al.  Autophagy and disease: always two sides to a problem , 2012, The Journal of pathology.

[160]  Ko Hashimoto,et al.  E74-like Factor 3 (ELF3) Impacts on Matrix Metalloproteinase 13 (MMP13) Transcriptional Control in Articular Chondrocytes under Proinflammatory Stress* , 2011, The Journal of Biological Chemistry.

[161]  Frank Beier,et al.  Emerging Frontiers in cartilage and chondrocyte biology. , 2011, Best practice & research. Clinical rheumatology.

[162]  A. Palou,et al.  Molecular players at the intersection of obesity and osteoarthritis. , 2011, Current drug targets.

[163]  M. Lotz,et al.  Autophagy activation by rapamycin reduces severity of experimental osteoarthritis , 2011, Annals of the rheumatic diseases.

[164]  Xianrong Zhang,et al.  The Critical Role of the Epidermal Growth Factor Receptor in Endochondral Ossification , 2011, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[165]  T. Wyss-Coray,et al.  Identification of a central role for complement in osteoarthritis , 2011, Nature Medicine.

[166]  N. Oreiro,et al.  Identification of a panel of novel serum osteoarthritis biomarkers. , 2011, Journal of proteome research.

[167]  E. Schwarz,et al.  Teriparatide as a Chondroregenerative Therapy for Injury-Induced Osteoarthritis , 2011, Science Translational Medicine.

[168]  Harrie Weinans,et al.  Osteoarthritis induction leads to early and temporal subchondral plate porosity in the tibial plateau of mice: an in vivo microfocal computed tomography study. , 2011, Arthritis and rheumatism.

[169]  R. Shaw,et al.  The AMPK signalling pathway coordinates cell growth, autophagy and metabolism , 2011, Nature Cell Biology.

[170]  D. Hunter,et al.  Emerging drugs for osteoarthritis , 2011, Expert opinion on emerging drugs.

[171]  K. Mikecz,et al.  Fibroblast growth factor receptor 1 is principally responsible for fibroblast growth factor 2-induced catabolic activities in human articular chondrocytes , 2011, Arthritis research & therapy.

[172]  M. Lotz,et al.  Autophagy and cartilage homeostasis mechanisms in joint health, aging and OA , 2011, Nature Reviews Rheumatology.

[173]  P. Sambrook,et al.  Increased chondrocyte sclerostin may protect against cartilage degradation in osteoarthritis. , 2011, Osteoarthritis and cartilage.

[174]  R. Terkeltaub,et al.  Chondrocyte AMP-activated protein kinase activity suppresses matrix degradation responses to proinflammatory cytokines interleukin-1β and tumor necrosis factor α. , 2011, Arthritis and rheumatism.

[175]  F. Berenbaum,et al.  Osteoarthritis: an update with relevance for clinical practice , 2011, The Lancet.

[176]  Takashi Nakamura,et al.  Sox9 sustains chondrocyte survival and hypertrophy in part through Pik3ca-Akt pathways , 2011, Development.

[177]  H. Roach,et al.  Suppressors of cytokine signalling (SOCS) are reduced in osteoarthritis. , 2011, Biochemical and biophysical research communications.

[178]  F. Blanco,et al.  The role of mitochondria in osteoarthritis , 2011, Nature Reviews Rheumatology.

[179]  H. Roach,et al.  Roles of inflammatory and anabolic cytokines in cartilage metabolism: signals and multiple effectors converge upon MMP-13 regulation in osteoarthritis. , 2011, European cells & materials.

[180]  J. Katz,et al.  Synovial inflammation in patients undergoing arthroscopic meniscectomy: molecular characterization and relationship to symptoms. , 2011, Arthritis and rheumatism.

[181]  D. Hunter,et al.  Phase 1 safety and tolerability study of BMP-7 in symptomatic knee osteoarthritis , 2010, BMC musculoskeletal disorders.

[182]  Kozo Nakamura,et al.  Transcriptional regulation of endochondral ossification by HIF-2α during skeletal growth and osteoarthritis development , 2010, Nature Medicine.

[183]  Jonghwan Kim,et al.  Hypoxia-inducible factor-2α is a catabolic regulator of osteoarthritic cartilage destruction , 2010, Nature Medicine.

[184]  R. Loeser,et al.  Biology and pathology of Rho GTPase, PI‐3 kinase‐Akt, and MAP kinase signaling pathways in chondrocytes , 2010, Journal of cellular biochemistry.

[185]  M. Goldring,et al.  NF-kappaB signaling: multiple angles to target OA. , 2010, Current drug targets.

[186]  B. Alman,et al.  Modulating hedgehog signaling can attenuate the severity of osteoarthritis , 2009, Nature Medicine.

[187]  Baltazar D. Aguda,et al.  Biomechanical Thresholds Regulate Inflammation through the NF-κB Pathway: Experiments and Modeling , 2009, PloS one.

[188]  Peter J Millett,et al.  High abundance synovial fluid proteome: distinct profiles in health and osteoarthritis , 2007, Arthritis research & therapy.

[189]  R. Terkeltaub,et al.  Emerging regulators of the inflammatory process in osteoarthritis , 2015, Nature Reviews Rheumatology.

[190]  Neil,et al.  Green Tea Polyphenol Treatment Is Chondroprotective, Anti-inflammatory And Palliative In A Mouse Post-traumatic Osteoarthritis Model , 2015 .

[191]  P. M. van der Kraan Age-related alterations in TGF beta signaling as a causal factor of cartilage degeneration in osteoarthritis. , 2014, Bio-medical materials and engineering.

[192]  P. D. Kraan Age-related alterations in TGF beta signaling as a causal factor of cartilage degeneration in osteoarthritis , 2014 .

[193]  M. McBurney,et al.  Sirtuin 1 enzymatic activity is required for cartilage homeostasis in vivo in a mouse model. , 2013, Arthritis and rheumatism.

[194]  F. Berenbaum,et al.  Osteoarthritis as an inflammatory disease (osteoarthritis is not osteoarthrosis!). , 2013, Osteoarthritis and cartilage.

[195]  N. Oreiro,et al.  Mitochondrial genetics and osteoarthritis. , 2013, Frontiers in bioscience.

[196]  J. Bertrand,et al.  Syndecans in cartilage breakdown and synovial inflammation , 2013, Nature Reviews Rheumatology.

[197]  M. Dvir-Ginzberg,et al.  Towards elucidating the role of SirT1 in osteoarthritis. , 2013, Frontiers in bioscience.

[198]  温春毅,et al.  Inhibition of TGF-β signaling in mesenchymal stem cells of subchondral bone attenuates osteoarthritis , 2013 .

[199]  W. B. van den Berg,et al.  Chondrocyte hypertrophy and osteoarthritis: role in initiation and progression of cartilage degeneration? , 2012, Osteoarthritis and cartilage.