Study of Linearity and Power Consumption Requirements of CMOS Low Noise Amplifiers in Context of LTE Systems and Beyond

This paper presents a study of linearity in wideband CMOS low noise amplifiers (LNA) and its relationship to power consumption in context of Long Term Evolution (LTE) systems and its future developments. Using proposed figure of merit (FoM) to compare 35 state-of-the-art LNA circuits published over the last decade, the paper explores a dependence between amplifier performance (i.e., combined linearity, noise figure, and gain) and power consumption. In order to satisfy stringent linearity specifications for LTE standard (and its likely successors), the paper predicts that LNA FoM increase in the range of

[1]  Ahmad Mirzaei,et al.  A 6.5 GHz wideband CMOS low noise amplifier for multi-band use , 2005, Proceedings of the IEEE 2005 Custom Integrated Circuits Conference, 2005..

[2]  Dimitri Linten,et al.  An ESD-Protected DC-to-6GHz 9.7mW LNA in 90nm Digital CMOS , 2007, 2007 IEEE International Solid-State Circuits Conference. Digest of Technical Papers.

[3]  Jenshan Lin,et al.  A Packaged and ESD-Protected Inductorless 0.1–8 GHz Wideband CMOS LNA , 2008, IEEE Microwave and Wireless Components Letters.

[4]  Behzad Razavi,et al.  A Harmonic-Rejecting CMOS LNA for Broadband Radios , 2012, IEEE Journal of Solid-State Circuits.

[5]  Joung Won Park,et al.  Robust derivative superposition method for linearising broadband LNAs , 2009 .

[6]  Jusung Kim,et al.  Wideband Common-Gate CMOS LNA Employing Dual Negative Feedback With Simultaneous Noise, Gain, and Bandwidth Optimization , 2010, IEEE Transactions on Microwave Theory and Techniques.

[7]  R. Gharpurey A broadband low-noise front-end amplifier for ultra wideband in 0.13-/spl mu/m CMOS , 2004, IEEE Journal of Solid-State Circuits.

[8]  Kwyro Lee,et al.  A Highly Linear Wideband CMOS Low-Noise Amplifier Based on Current Amplification for Digital TV Tuner Applications , 2008, IEEE Microwave and Wireless Components Letters.

[9]  J. Laskar,et al.  A 0.5-6 GHz Improved Linearity, Resistive Feedback 90-nm CMOS LNA , 2006, 2006 IEEE Asian Solid-State Circuits Conference.

[10]  P. Baltus,et al.  A 1.2 V, Inductorless, Broadband LNA in 90 nm CMOS LP , 2007, 2007 IEEE Radio Frequency Integrated Circuits (RFIC) Symposium.

[11]  Wei-Hung Chen,et al.  Designs of Broadband Highly Linear CMOS LNAs for Multiradio Multimode Applications , 2009 .

[12]  Ali M. Niknejad,et al.  A Highly Linear Broadband CMOS LNA Employing Noise and Distortion Cancellation , 2007, IEEE Journal of Solid-State Circuits.

[13]  Pui-In Mak,et al.  A $2\times V_{\rm DD}$-Enabled Mobile-TV RF Front-End With TV-GSM Interoperability in 1-V 90-nm CMOS , 2010, IEEE Transactions on Microwave Theory and Techniques.

[14]  Thomas H. Lee,et al.  The Design of CMOS Radio-Frequency Integrated Circuits: RF CIRCUITS THROUGH THE AGES , 2003 .

[15]  K. Entesari,et al.  A CMOS Low-Noise Amplifier With Reconfigurable Input Matching Network , 2009, IEEE Transactions on Microwave Theory and Techniques.

[16]  Minjae Lee,et al.  An 800-MHz–6-GHz Software-Defined Wireless Receiver in 90-nm CMOS , 2006, IEEE Journal of Solid-State Circuits.

[17]  Edgar Sánchez-Sinencio,et al.  An Inductor-Less Noise-Cancelling Broadband Low Noise Amplifier With Composite Transistor Pair in 90 nm CMOS Technology , 2011, IEEE Journal of Solid-State Circuits.

[18]  Kwyro Lee,et al.  A 13 dB IIP3 improved low-power CMOS RF programmable gain amplifier using differential circuit transconductance linearization for various terrestrial mobile D-TV applications , 2005, Digest of Technical Papers. 2005 Symposium on VLSI Circuits, 2005..

[19]  Ilku Nam,et al.  A Wideband CMOS Low Noise Amplifier Employing Noise and IM2 Distortion Cancellation for a Digital TV Tuner , 2009, IEEE J. Solid State Circuits.

[20]  P. Wambacq,et al.  Low-Area Active-Feedback Low-Noise Amplifier Design in Scaled Digital CMOS , 2008, IEEE Journal of Solid-State Circuits.

[21]  Ali Hajimiri,et al.  Equalization of IM3 Products in Wideband Direct-Conversion Receivers , 2008, 2008 IEEE International Solid-State Circuits Conference - Digest of Technical Papers.

[22]  R. Brodersen,et al.  A sub-mW 960-MHz ultra-wideband CMOS LNA , 2005, 2005 IEEE Radio Frequency integrated Circuits (RFIC) Symposium - Digest of Papers.

[23]  Chuan Yi Tang,et al.  A 2.|E|-Bit Distributed Algorithm for the Directed Euler Trail Problem , 1993, Inf. Process. Lett..

[24]  Tae-Sung Kim,et al.  Post-linearization of cascode CMOS low noise amplifier using folded PMOS IMD sinker , 2006, IEEE Microwave and Wireless Components Letters.

[25]  E. Sanchez-Sinencio,et al.  A 2.8-mW Sub-2-dB Noise-Figure Inductorless Wideband CMOS LNA Employing Multiple Feedback , 2011, IEEE Transactions on Microwave Theory and Techniques.

[26]  Ranjit Gharpurey A broadband low-noise front-end amplifier for ultra wideband in 0.13 μm CMOS , 2004, CICC.

[27]  M. Moezzi,et al.  Wideband LNA Using Active Inductor With Multiple Feed-Forward Noise Reduction Paths , 2012, IEEE Transactions on Microwave Theory and Techniques.

[28]  Ilku Nam,et al.  A CMOS active feedback wideband single-to-differential LNA using inductive shunt-peaking for saw-less SDR receivers , 2010, 2010 IEEE Asian Solid-State Circuits Conference.

[29]  Shen-Iuan Liu,et al.  A broadband noise-canceling CMOS LNA for 3.1-10.6-GHz UWB receiver , 2005, Proceedings of the IEEE 2005 Custom Integrated Circuits Conference, 2005..

[30]  Li Zhang,et al.  A Wideband Inductorless LNA With Local Feedback and Noise Cancelling for Low-Power Low-Voltage Applications , 2010, IEEE Transactions on Circuits and Systems I: Regular Papers.

[31]  S.S. Taylor,et al.  A 5GHz resistive-feedback CMOS LNA for low-cost multi-standard applications , 2006, 2006 IEEE International Solid State Circuits Conference - Digest of Technical Papers.

[32]  Robert G. Meyer,et al.  Analysis and Design of Analog Integrated Circuits , 1993 .

[33]  J.R. Long,et al.  A 1.2 V Reactive-Feedback 3.1–10.6 GHz Low-Noise Amplifier in 0.13 $\mu{\hbox {m}}$ CMOS , 2007, IEEE Journal of Solid-State Circuits.

[34]  Mohamed A. Y. Abdulla,et al.  Distortion Analysis in Analog Integrated Circuits , 2002 .

[35]  Ilku Nam,et al.  A CMOS Active Feedback Balun-LNA With High IIP2 for Wideband Digital TV Receivers , 2010, IEEE Transactions on Microwave Theory and Techniques.

[36]  Stefania Sesia,et al.  LTE - The UMTS Long Term Evolution , 2009 .

[37]  Heng Zhang,et al.  Linearization Techniques for CMOS Low Noise Amplifiers: A Tutorial , 2011, IEEE Transactions on Circuits and Systems I: Regular Papers.

[38]  Joy Laskar,et al.  A 3.6mW differential common-gate CMOS LNA with positive-negative feedback , 2009, 2009 IEEE International Solid-State Circuits Conference - Digest of Technical Papers.

[39]  Antti Toskala,et al.  LTE for UMTS - OFDMA and SC-FDMA Based Radio Access , 2009 .

[40]  B. Nauta,et al.  Wide-band CMOS low-noise amplifier exploiting thermal noise canceling , 2004, IEEE Journal of Solid-State Circuits.

[41]  M. Tiebout,et al.  Inductorless 1–10.5 GHz wideband LNA for multistandard applications , 2009, 2009 IEEE Asian Solid-State Circuits Conference.

[42]  Morten Damgaard,et al.  IP2 and IP3 Nonlinearity Specifications for 3G/WCDMA Receivers , 2009 .

[43]  R. Harjani,et al.  A +18 dBm IIP3 LNA in 0.35 /spl mu/m CMOS , 2001, 2001 IEEE International Solid-State Circuits Conference. Digest of Technical Papers. ISSCC (Cat. No.01CH37177).

[44]  B. Nauta,et al.  An inductorless wideband balun-LNA in 65nm CMOS with balanced output , 2007, ESSCIRC 2007 - 33rd European Solid-State Circuits Conference.

[45]  Stefania Sesia,et al.  LTE - The UMTS Long Term Evolution, Second Edition , 2011 .

[46]  Yueh-Hua Yu,et al.  High PSR Low Drop-Out Regulator With Feed-Forward Ripple Cancellation Technique , 2010, IEEE Journal of Solid-State Circuits.