Empirical comparisons of several derivative free optimization algorithms

In this paper, the performances of the quasi-Newton BFGS algorithm, the NEWUOA derivative free optimization algorithm, the Covariance Matrix Adaptation Evolution Strategy (CMA-ES), the Differential Evolution (DE) algorithm and a Particle Swarm Optimization (PSO) algorithm are compared experimentally on benchmark functions reflecting important challenges encountered in real-world optimization problems. Dependence of the performances in the conditioning of the problem and rotational invariance of the algorithms are in particular investigated.

[1]  W. Vent,et al.  Rechenberg, Ingo, Evolutionsstrategie — Optimierung technischer Systeme nach Prinzipien der biologischen Evolution. 170 S. mit 36 Abb. Frommann‐Holzboog‐Verlag. Stuttgart 1973. Broschiert , 1975 .

[2]  Vitaliy Feoktistov Differential Evolution: In Search of Solutions , 2006 .

[3]  O. SIAMJ.,et al.  ON THE CONVERGENCE OF PATTERN SEARCH ALGORITHMS , 1997 .

[4]  Riccardo Poli,et al.  Particle swarm optimization , 1995, Swarm Intelligence.

[5]  Jing J. Liang,et al.  Problem Definitions and Evaluation Criteria for the CEC 2005 Special Session on Real-Parameter Optimization , 2005 .

[6]  Nikolaus Hansen,et al.  The CMA Evolution Strategy: A Comparing Review , 2006, Towards a New Evolutionary Computation.

[7]  A. Groenwold,et al.  Comparison of linear and classical velocity update rules in particle swarm optimization: notes on scale and frame invariance , 2007 .

[8]  Anne Auger,et al.  Performance evaluation of an advanced local search evolutionary algorithm , 2005, 2005 IEEE Congress on Evolutionary Computation.

[9]  N. Hansen,et al.  PSO Facing Non-Separable and Ill-Conditioned Problems , 2008 .

[10]  Nikolaus Hansen,et al.  Completely Derandomized Self-Adaptation in Evolution Strategies , 2001, Evolutionary Computation.

[11]  M. Powell The NEWUOA software for unconstrained optimization without derivatives , 2006 .

[12]  Ingo Rechenberg,et al.  Evolutionsstrategie : Optimierung technischer Systeme nach Prinzipien der biologischen Evolution , 1973 .

[13]  Nikolaus Hansen,et al.  Evaluating the CMA Evolution Strategy on Multimodal Test Functions , 2004, PPSN.

[14]  Katya Scheinberg,et al.  Recent progress in unconstrained nonlinear optimization without derivatives , 1997, Math. Program..

[15]  Yun-Wei Shang,et al.  A Note on the Extended Rosenbrock Function , 2006, Evolutionary Computation.

[16]  Rainer Storn,et al.  Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces , 1997, J. Glob. Optim..