Carole Candida glabrata Mutants of Mechanisms of Azole Resistance in Petite

[1]  K. Kavanagh,et al.  Disruption of mitochondrial function in Candida albicans leads to reduced cellular ergosterol levels and elevated growth in the presence of amphotericin B , 2003, Archives of Microbiology.

[2]  R. Filmon,et al.  Relationships between Respiration and Susceptibility to Azole Antifungals in Candida glabrata , 2003, Antimicrobial Agents and Chemotherapy.

[3]  K. Kavanagh,et al.  Erythromycin, an inhibitor of mitoribosomal protein biosynthesis, alters the amphotericin B susceptibility of Candida albicans , 2003, The Journal of pharmacy and pharmacology.

[4]  J. Lopez-Ribot,et al.  Multiple Patterns of Resistance to Fluconazole in Candida glabrata Isolates from a Patient with Oropharyngeal Candidiasis Receiving Head and Neck Radiation , 2003, Journal of Clinical Microbiology.

[5]  Ha Won Kim,et al.  Mutagenicity of reactive oxygen and nitrogen species as detected by co-culture of activated inflammatory leukocytes and AS52 cells. , 2003, Carcinogenesis.

[6]  B. Dujon,et al.  The complete mitochondrial genome sequence of the pathogenic yeast Candida (Torulopsis) glabrata , 2003, FEBS letters.

[7]  Thierry Ferreira,et al.  SUT1 suppresses sec14-1 through upregulation of CSR1 in Saccharomyces cerevisiae. , 2002, FEMS microbiology letters.

[8]  J. Morschhäuser The genetic basis of fluconazole resistance development in Candida albicans. , 2002, Biochimica et biophysica acta.

[9]  Simon Wong,et al.  Gene order evolution and paleopolyploidy in hemiascomycete yeasts , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[10]  B. Wickes,et al.  Molecular Mechanisms of Fluconazole Resistance in Candida dubliniensis Isolates from Human Immunodeficiency Virus-Infected Patients with Oropharyngeal Candidiasis , 2002, Antimicrobial Agents and Chemotherapy.

[11]  J. Lopez-Ribot,et al.  Heterogeneous mechanisms of azole resistance in Candida albicans clinical isolates from an HIV-infected patient on continuous fluconazole therapy for oropharyngeal candidosis. , 2002, The Journal of antimicrobial chemotherapy.

[12]  I. Hapala,et al.  Heme-regulated expression of two yeast acyl-CoA:sterol acyltransferases is involved in the specific response of sterol esterification to anaerobiosis. , 2002, FEMS microbiology letters.

[13]  M. Bard,et al.  Transcriptional Regulation of the Two Sterol Esterification Genes in the Yeast Saccharomyces cerevisiae , 2001, Journal of bacteriology.

[14]  J. Paulin,et al.  Characterization in apple leaves of two subclasses of PR-10 transcripts inducible by acibenzolar-S-methyl, a functional analogue of salicylic acid , 2001 .

[15]  D. Sanglard,et al.  Role of ATP-Binding-Cassette Transporter Genes in High-Frequency Acquisition of Resistance to Azole Antifungals in Candida glabrata , 2001, Antimicrobial Agents and Chemotherapy.

[16]  I. Hapala,et al.  Anaerobiosis induces complex changes in sterol esterification pattern in the yeast Saccharomyces cerevisiae. , 2001, FEMS microbiology letters.

[17]  C. Ingles,et al.  Interorganellar Communication , 2001, The Journal of Biological Chemistry.

[18]  Y. Liu,et al.  Mutations in Yeast ARV1 Alter Intracellular Sterol Distribution and Are Complemented by Human ARV1 * , 2000, The Journal of Biological Chemistry.

[19]  R. Filmon,et al.  In-vivo selection of an azole-resistant petite mutant of Candida glabrata. , 2000, Journal of medical microbiology.

[20]  D. Kontoyiannis Modulation of fluconazole sensitivity by the interaction of mitochondria and erg3p in Saccharomyces cerevisiae. , 2000, The Journal of antimicrobial chemotherapy.

[21]  D. Sanglard,et al.  The ATP Binding Cassette Transporter GeneCgCDR1 from Candida glabrata Is Involved in the Resistance of Clinical Isolates to Azole Antifungal Agents , 1999, Antimicrobial Agents and Chemotherapy.

[22]  J. Bennett,et al.  Cloning, sequencing, expression and allelic sequence diversity of ERG3 (C-5 sterol desaturase gene) in Candida albicans. , 1999, Gene.

[23]  J. Bouchara,et al.  In-vitro resistance to azoles associated with mitochondrial DNA deficiency in Candida glabrata. , 1999, Journal of medical microbiology.

[24]  S. Kohno,et al.  Rhodamine 6G efflux for the detection of CDR1-overexpressing azole-resistant Candida albicans strains. , 1999, The Journal of antimicrobial chemotherapy.

[25]  J. Sobel,et al.  Candida glabrata: Review of Epidemiology, Pathogenesis, and Clinical Disease with Comparison toC. albicans , 1999, Clinical Microbiology Reviews.

[26]  D. Ward,et al.  Fluconazole Resistance Associated with Drug Efflux and Increased Transcription of a Drug Transporter Gene, PDH1, inCandida glabrata , 1998, Antimicrobial Agents and Chemotherapy.

[27]  C. van Broeckhoven,et al.  Molecular biological characterization of an azole-resistant Candida glabrata isolate , 1997, Antimicrobial agents and chemotherapy.

[28]  D. Kelly,et al.  Resistance to fluconazole and cross‐resistance to amphotericin B in Candida albicans from AIDS patients caused by defective sterol Δ5,6‐desaturation , 1997, FEBS letters.

[29]  J. Wingard,et al.  Isolation and characterization of fluconazole- and amphotericin B-resistant Candida albicans from blood of two patients with leukemia , 1997, Antimicrobial agents and chemotherapy.

[30]  M. Bard,et al.  Positive and negative regulation of a sterol biosynthetic gene (ERG3) in the post‐squalene portion of the yeast ergosterol pathway , 1996, FEBS letters.

[31]  D. Snydman,et al.  The changing face of candidemia: emergence of non-Candida albicans species and antifungal resistance. , 1996, The American journal of medicine.

[32]  D. A. Bruner,et al.  Sterol Esterification in Yeast: A Two-Gene Process , 1996, Science.

[33]  J. Swartz,et al.  Deletion of the Candida glabrata ERG3 and ERG11 genes: effect on cell viability, cell growth, sterol composition, and antifungal susceptibility , 1995, Antimicrobial agents and chemotherapy.

[34]  T. Parkinson,et al.  Fluconazole resistance due to energy-dependent drug efflux in Candida glabrata , 1995, Antimicrobial agents and chemotherapy.

[35]  P. Troke,et al.  Fluconazole resistance in Candida glabrata , 1993, Antimicrobial Agents and Chemotherapy.

[36]  F. Odds,et al.  Characterization of an azole-resistant Candida glabrata isolate , 1992, Antimicrobial Agents and Chemotherapy.

[37]  A. Mallet,et al.  A comparison of the sterol content of multiple isolates of the Candida albicans Darlington strain with other clinically azole-sensitive and -resistant strains. , 1990, The Journal of applied bacteriology.

[38]  S. Kelly,et al.  Genetic and physiological analysis of azole sensitivity in Saccharomyces cerevisiae. , 1989, Journal of medical and veterinary mycology : bi-monthly publication of the International Society for Human and Animal Mycology.

[39]  S. Kelly,et al.  Isolation and analysis of ketoconazole resistant mutants of Saccharomyces cerevisiae. , 1988, Journal of medical and veterinary mycology : bi-monthly publication of the International Society for Human and Animal Mycology.

[40]  R. A. Butow,et al.  The mitochondrial genotype can influence nuclear gene expression in yeast. , 1987, Science.

[41]  F. Karst,et al.  Regulation of early enzymes of ergosterol biosynthesis in Saccharomyces cerevisiae. , 1986, The Biochemical journal.

[42]  T. Arai,et al.  Primary site of action of ketoconazole on Candida albicans , 1982, Antimicrobial Agents and Chemotherapy.

[43]  T. Arai,et al.  Effect of ketoconazole on isolated mitochondria from Candida albicans , 1982, Antimicrobial Agents and Chemotherapy.

[44]  G. D. Clark-Walker,et al.  Respiratory-deficient mutants of Torulopsis glabrata, a yeast with circular mitochondrial deoxyribonucleic acid of 6 mu m , 1976, Journal of bacteriology.

[45]  G. R. Rao,et al.  Studies on the Mechanism of Action of Miconazole: Effect of Miconazole on Respiration and Cell Permeability of Candida albicans , 1974, Antimicrobial Agents and Chemotherapy.