Influence of brine on hydration reaction of calcium sulfoaluminate and slag blended cement

[1]  Ngai Yin Yip,et al.  Drivers, challenges, and emerging technologies for desalination of high-salinity brines: A critical review , 2022, Desalination.

[2]  D. Revuelta,et al.  Microstructural phenomena involved in the expansive performance of cement pastes based on type K expansive agent , 2022, Cement and Concrete Research.

[3]  Taewan Kim,et al.  Effect of reverse-osmosis brine and sodium aluminate on the hydration properties and strength of alkali-activated slag cement , 2022, Case Studies in Construction Materials.

[4]  G. de Schutter,et al.  A review: Reaction mechanism and strength of slag and fly ash-based alkali-activated materials , 2022, Construction and Building Materials.

[5]  Danying Gao,et al.  Properties evolution of calcium sulfoaluminate cement blended with ground granulated blast furnace slag suffered from sulfate attack , 2022, Journal of Materials Research and Technology.

[6]  Yu-min Hao,et al.  Solidification/stabilization of red mud with natural radionuclides in granular blast furnace slag based geopolymers , 2022, Construction and Building Materials.

[7]  C. Poon,et al.  Effect of seawater as mixing water on the hydration behaviour of tricalcium aluminate , 2021 .

[8]  S. Ruan,et al.  Effects of cyclic seawater exposure on the mechanical performance and chloride penetration of calcium sulfoaluminate concrete , 2021 .

[9]  B. Dugan,et al.  Injection of desalination brine into the saline part of the coastal aquifer; environmental and hydrological implications. , 2021, Water research.

[10]  Hongye Gou,et al.  Unfired bricks prepared with red mud and calcium sulfoaluminate cement: Properties and environmental impact , 2021 .

[11]  Jae Hong Kim,et al.  Influence of seawater on alkali-activated slag concrete , 2021, Materials and Structures.

[12]  H.K. Lee,et al.  Carbonation of calcium sulfoaluminate cement blended with blast furnace slag , 2021 .

[13]  A. Fernández-Jiménez,et al.  Effect of Alkaline Salts on Calcium Sulfoaluminate Cement Hydration , 2021, Molecules.

[14]  A. Rashad,et al.  A review on alkali-activated slag concrete , 2021 .

[15]  Kejin Wang,et al.  Effect of steel slag on the hydration and strength development of calcium sulfoaluminate cement , 2020 .

[16]  F. Bertola,et al.  Behavior of blends of CSA and Portland cements in high chloride environment , 2020 .

[17]  M. Yam,et al.  Model for predicting shrinkage of concrete using calcium sulfoaluminate cement blended with OPC, PFA and GGBS , 2020 .

[18]  H. Yoon,et al.  Hydration of calcium sulfoaluminate cement blended with blast-furnace slag , 2020 .

[19]  K. Haralambous,et al.  Environmental impacts of desalination and brine treatment - Challenges and mitigation measures. , 2020, Marine pollution bulletin.

[20]  Solmoi Park Simulating the carbonation of calcium sulfoaluminate cement blended with supplementary cementitious materials , 2020 .

[21]  Yingliang Zhao,et al.  Chemical activation of binary slag cement with low carbon footprint , 2020 .

[22]  Jae Hong Kim,et al.  Chloride-bearing characteristics of alkali-activated slag mixed with seawater: Effect of different salinity levels , 2020 .

[23]  B. Li,et al.  Effect of alkali contents, moduli and curing time on engineering properties of alkali activated slag , 2020 .

[24]  G. Ke,et al.  Rheological behavior of calcium sulfoaluminate cement paste with supplementary cementitious materials , 2020 .

[25]  Taewan Kim,et al.  Pore and strength characteristics of alkali-activated slag paste with seawater , 2020 .

[26]  D. Revuelta,et al.  Influence of expansive calcium sulfoaluminate agent dosage on properties and microstructure of expansive self-compacting concretes , 2020 .

[27]  D. Gao,et al.  Effect of ground granulated blast furnace slag on the properties of calcium sulfoaluminate cement , 2019 .

[28]  M. Loizidou,et al.  Desalination brine disposal methods and treatment technologies - A review. , 2019, The Science of the total environment.

[29]  R. Snellings,et al.  Reactivity of supplementary cementitious materials (SCMs) in cement blends , 2019, Cement and Concrete Research.

[30]  U. Ebead,et al.  Hydration, Strength, and Shrinkage of Cementitious Materials Mixed with Simulated Desalination Brine , 2019, Advances in Civil Engineering Materials.

[31]  N. Hilal,et al.  Reverse osmosis desalination: A state-of-the-art review , 2019, Desalination.

[32]  Carlos Segovia Fernández,et al.  In situ characterization of main reaction products in alkali-activated slag materials by Confocal Raman Microscopy , 2019, Cement and Concrete Composites.

[33]  Tongsheng Zhang,et al.  The volumetric stability, chloride binding capacity and stability of the Portland cement-GBFS pastes: An approach from the viewpoint of hydration products , 2019, Construction and Building Materials.

[34]  B. Lothenbach,et al.  Further insights into calcium sulfoaluminate cement expansion , 2019, Advances in Cement Research.

[35]  E. Jones,et al.  The state of desalination and brine production: A global outlook. , 2019, The Science of the total environment.

[36]  Kuangliang Qian,et al.  Pore Solution Chemistry of Calcium Sulfoaluminate Cement and Its Effects on Steel Passivation , 2019, Applied Sciences.

[37]  Xingyang He,et al.  Compressive strength and hydration process of wet-grinded granulated blast-furnace slag activated by sodium sulfate and sodium carbonate , 2019, Cement and Concrete Composites.

[38]  M. Yam,et al.  1-Year development trend of concrete compressive strength using Calcium Sulfoaluminate cement blended with OPC, PFA and GGBS , 2019, Construction and Building Materials.

[39]  F. Bertola,et al.  CSA and slag: towards CSA composite binders , 2019, Advances in Cement Research.

[40]  J. Qian,et al.  Influence of ternesite on the properties of calcium sulfoaluminate cements blended with fly ash , 2018, Construction and Building Materials.

[41]  Xiaojian Gao,et al.  Potential application of Portland cement-calcium sulfoaluminate cement blends to avoid early age frost damage , 2018, Construction and Building Materials.

[42]  Antonio Nanni,et al.  Fresh and hardened properties of seawater-mixed concrete , 2018, Construction and Building Materials.

[43]  A. Bayat,et al.  Effects of red mud on the properties of fresh and hardened alkali-activated slag paste and mortar , 2018 .

[44]  L. Bertolini,et al.  Corrosion resistance of steel embedded in sulfoaluminate-based binders , 2018 .

[45]  X. Cui,et al.  Study on the development of inorganic polymers from red mud and slag system: Application in mortar and lightweight materials , 2017 .

[46]  Antonio Nanni,et al.  Use of sea-sand and seawater in concrete construction: Current status and future opportunities , 2017 .

[47]  Gabriel Jen,et al.  Chloride ingress in a belite-calcium sulfoaluminate cement matrix , 2017 .

[48]  Frank Winnefeld,et al.  Carbonation of calcium sulfoaluminate mortars , 2017 .

[49]  Benoit Fournier,et al.  Determination of the pH and the free alkali metal content in the pore solution of concrete: Review and experimental comparison , 2017 .

[50]  F. Puertas,et al.  Alkali-activated Portland blast-furnace slag cement: Mechanical properties and hydration , 2017 .

[51]  B. Lothenbach,et al.  Influence of fly ash on the hydration of calcium sulfoaluminate cement , 2017 .

[52]  J. Provis,et al.  Production and hydration of calcium sulfoaluminate-belite cements derived from aluminium anodising sludge , 2016 .

[53]  B. Lothenbach,et al.  Phase equilibria in the system Ca 4 Al 6 O 12 SO 4 – Ca 2 SiO 4 – CaSO 4 – H 2 O referring to the hydration of calcium sulfoaluminate cements , 2016 .

[54]  Nele De Belie,et al.  Methods for measuring pH in concrete: A review , 2016 .

[55]  Markku Hurme,et al.  Cement industry greenhouse gas emissions – management options and abatement cost , 2016 .

[56]  Huisheng Shi,et al.  Calcium sulfoaluminate (CSA) blended cements , 2016 .

[57]  R. Kumar,et al.  Observation of phase transformations in cement during hydration , 2015 .

[58]  Rafat Siddique,et al.  Recent advances in understanding the role of supplementary cementitious materials in concrete , 2015 .

[59]  B. Lothenbach,et al.  Thermodynamic modelling of alkali-activated slag cements , 2015 .

[60]  B. Lothenbach,et al.  Contribution of limestone to the hydration of calcium sulfoaluminate cement , 2015 .

[61]  E. Portillo,et al.  Dispersion of desalination plant brine discharge under varied hydrodynamic conditions in the south of Gran Canaria , 2014 .

[62]  M. García-Maté,et al.  Hydration studies of calcium sulfoaluminate cements blended with fly ash , 2013 .

[63]  H. Hou,et al.  Identification of chromate binding mechanisms in Friedel’s salt , 2013 .

[64]  Jeffrey J. Chen,et al.  Overview about the use of Fourier Transform Infrared spectroscopy to study cementitious materials , 2013 .

[65]  U. Jäglid,et al.  Carbonation of Portland Cement Studied by Diffuse Reflection Fourier Transform Infrared Spectroscopy , 2013 .

[66]  A. Fernández-Jiménez,et al.  C4A3Š hydration in different alkaline media , 2013 .

[67]  Neil B. Milestone,et al.  Hydration and properties of sodium sulfate activated slag , 2013 .

[68]  Mohammed S. Imbabi,et al.  Trends and developments in green cement and concrete technology , 2012 .

[69]  Alain Sellier,et al.  Hydration of slag-blended cements , 2012 .

[70]  M. Alexander,et al.  Early-age properties, strength development and heat of hydration of concrete containing various South African slags at different replacement ratios , 2012 .

[71]  J. Pera,et al.  The influence of gypsum ratio on the mechanical performance of slag cement accelerated by calcium sulfoaluminate cement , 2011 .

[72]  Frank Winnefeld,et al.  Influence of activator type on hydration kinetics, hydrate assemblage and microstructural development of alkali activated blast-furnace slags , 2011 .

[73]  B. Lothenbach,et al.  Hydration of calcium sulfoaluminate cements — Experimental findings and thermodynamic modelling , 2010 .

[74]  C. Meyer The greening of the concrete industry , 2009 .

[75]  Fredrik P. Glasser,et al.  Investigation Of The Microstructure And Carbonation Of CSA-Based Concretes Removed From Service , 2005 .

[76]  T. Matschei,et al.  Hydration behaviour of sulphate-activated slag cements , 2005 .

[77]  William H. Hartt,et al.  Ex situ leaching measurement of concrete alkalinity , 2005 .

[78]  Tarek Uddin Mohammed,et al.  Performance of seawater-mixed concrete in the tidal environment , 2004 .

[79]  Norbert J. Delatte,et al.  Effect of supplementary cementitious materials on the compressive strength and durability of short-term cured concrete , 2004 .

[80]  F. Glasser,et al.  High-performance cement matrices based on calcium sulfoaluminate–belite compositions , 2001 .

[81]  J. Escalante,et al.  Reactivity of blast-furnace slag in Portland cement blends hydrated under different conditions , 2001 .

[82]  A. Lavat,et al.  Analysis of the system 3CaO·Al2O3–CaSO4·2H2O–CaCO3–H2O by FT-IR spectroscopy , 2001 .

[83]  K. Ganesh Babu,et al.  Efficiency of GGBS in concrete , 2000 .

[84]  V. Pavlík Water extraction of chloride, hydroxide and other ions from hardened cement pastes , 2000 .

[85]  K. Scrivener,et al.  Hydration products of alkali activated slag cement , 1995 .

[86]  D. Gastaldi,et al.  Friedel's salt formation in sulfoaluminate cements: A combined XRD and 27Al MAS NMR study , 2015 .

[87]  Yun Yan,et al.  Utilization of phosphate fertilizer industry waste for belite-ferroaluminate cement production , 2013 .

[88]  S. Islam,et al.  Suitability of sea water on curing and compressive strength of structural concrete , 2012 .

[89]  Gilles Mertens,et al.  Supplementary Cementitious Materials , 2012 .

[90]  Dg Evans,et al.  Structural aspects of layered double hydroxides , 2006 .

[91]  W. Xue-quan,et al.  The influence of compound admixtures on the properties of high-content slag cement , 2000 .