Adsorption of gas molecules on monolayer MoS2 and effect of applied electric field

AbstractUsing first-principles calculations, we investigate the adsorption of various gas molecules (H2, O2, H2O, NH3, NO, NO2, and CO) on monolayer MoS2. The most stable adsorption configuration, adsorption energy, and charge transfer are obtained. It is shown that all the molecules are weakly adsorbed on the monolayer MoS2 surface and act as charge acceptors for the monolayer, except NH3 which is found to be a charge donor. Furthermore, we show that charge transfer between the adsorbed molecule and MoS2 can be significantly modulated by a perpendicular electric field. Our theoretical results are consistent with the recent experiments and suggest MoS2 as a potential material for gas sensing application.

[1]  G. Kresse,et al.  Ab initio molecular dynamics for liquid metals. , 1993 .

[2]  S. Lebègue,et al.  Electronic structure of two-dimensional crystals from ab-initio theory , 2009, 0901.0440.

[3]  Kong,et al.  Nanotube molecular wires as chemical sensors , 2000, Science.

[4]  Weihua Tang,et al.  First principles study of structural, vibrational and electronic properties of graphene-like MX2 (M=Mo, Nb, W, Ta; X=S, Se, Te) monolayers , 2011 .

[5]  Ke-Wei Xu,et al.  Improving SO2 gas sensing properties of graphene by introducing dopant and defect: A first-principles study , 2014 .

[6]  Q. Jiang,et al.  Enhancement of CO detection in Al doped graphene , 2008, 0806.3172.

[7]  J. Shan,et al.  Atomically thin MoS₂: a new direct-gap semiconductor. , 2010, Physical review letters.

[8]  Branimir Radisavljevic,et al.  Integrated circuits and logic operations based on single-layer MoS2. , 2011, ACS nano.

[9]  Q. Jiang,et al.  Correlation of the applied electrical field and CO adsorption/desorption behavior on Al-doped graphene , 2010 .

[10]  Qing Hua Wang,et al.  Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. , 2012, Nature nanotechnology.

[11]  Can Ataca,et al.  Stable, Single-Layer MX2 Transition-Metal Oxides and Dichalcogenides in a Honeycomb-Like Structure , 2012 .

[12]  K. Novoselov,et al.  Detection of individual gas molecules adsorbed on graphene. , 2006, Nature materials.

[13]  A. Radenović,et al.  Single-layer MoS2 transistors. , 2011, Nature nanotechnology.

[14]  S. Ciraci,et al.  Functionalization of Single-Layer MoS2 Honeycomb Structures , 2010, 1009.5527.

[15]  S. Min,et al.  MoS₂ nanosheet phototransistors with thickness-modulated optical energy gap. , 2012, Nano letters.

[16]  Chun Zhang,et al.  Adsorption of gas molecules on transition metal embedded graphene: a search for high-performance graphene-based catalysts and gas sensors , 2011, Nanotechnology.

[17]  Qiyuan He,et al.  Fabrication of flexible MoS2 thin-film transistor arrays for practical gas-sensing applications. , 2012, Small.

[18]  Zhengzheng Shao,et al.  Bandgap tuning in armchair MoS2 nanoribbon , 2012, Journal of physics. Condensed matter : an Institute of Physics journal.

[19]  Thomas Heine,et al.  Influence of quantum confinement on the electronic structure of the transition metal sulfide T S 2 , 2011, 1104.3670.

[20]  Hua Zhang,et al.  The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. , 2013, Nature chemistry.

[21]  Chongwu Zhou,et al.  Detection of NO2 down to ppb levels using individual and multiple In2O3 nanowire devices , 2004 .

[22]  Hua Zhang,et al.  Fabrication of single- and multilayer MoS2 film-based field-effect transistors for sensing NO at room temperature. , 2012, Small.

[23]  Hongjie Dai,et al.  Ab initio study of CNT NO2 gas sensor , 2004 .

[24]  K. Novoselov,et al.  Molecular doping of graphene. , 2007, Nano letters.

[25]  D. Chadi,et al.  Special points for Brillouin-zone integrations , 1977 .

[26]  F. M. Peeters,et al.  Adsorption of H 2 O , N H 3 , CO, N O 2 , and NO on graphene: A first-principles study , 2007, 0710.1757.

[27]  J. Grossman,et al.  Broad-range modulation of light emission in two-dimensional semiconductors by molecular physisorption gating. , 2013, Nano letters.

[28]  G. Henkelman,et al.  A fast and robust algorithm for Bader decomposition of charge density , 2006 .

[29]  Xinran Wang,et al.  Electrical characterization of back-gated bi-layer MoS2 field-effect transistors and the effect of ambient on their performances , 2012 .

[30]  Chenglu Lin,et al.  Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors , 2004 .

[31]  Neil Rodrigues,et al.  Extreme Oxygen Sensitivity of Electronic Properties of Carbon Nanotubes , 2022 .

[32]  Jianmin Yuan,et al.  Gas adsorption on graphene doped with B, N, Al, and S: A theoretical study , 2009 .

[33]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[34]  Yoshihiro Iwasa,et al.  Ambipolar MoS2 thin flake transistors. , 2012, Nano letters.

[35]  Hua Zhang,et al.  Single-layer MoS2 phototransistors. , 2012, ACS nano.

[36]  Daoben Zhu,et al.  Chemical doping of graphene , 2011 .

[37]  H. Zeng,et al.  Two-dimensional semiconductors: recent progress and future perspectives , 2013 .

[38]  Z. Cao,et al.  Adsorption of nitrogen oxides on graphene and graphene oxides: insights from density functional calculations. , 2011, The Journal of chemical physics.

[39]  Takhee Lee,et al.  Oxygen environmental and passivation effects on molybdenum disulfide field effect transistors , 2013, Nanotechnology.

[40]  Jijun Zhao,et al.  Gas molecule adsorption in carbon nanotubes and nanotube bundles , 2002 .

[41]  J. Kong,et al.  Integrated Circuits Based on Bilayer MoS , 2012 .