Overcoming Carrier Concentration Limits in Polycrystalline CdTe Thin Films with In Situ Doping

[1]  M. Young,et al.  Experimental and theoretical comparison of Sb, As, and P diffusion mechanisms and doping in CdTe , 2018 .

[2]  W. Metzger,et al.  The roles of carrier concentration and interface, bulk, and grain-boundary recombination for 25% efficient CdTe solar cells , 2017 .

[3]  I. Sankin,et al.  Defect interactions and the role of complexes in the CdTe solar cell absorber , 2017 .

[4]  Eric Colegrove,et al.  Antimony Diffusion in CdTe , 2017, IEEE Journal of Photovoltaics.

[5]  D. Kuciauskas,et al.  Carrier density and lifetime for different dopants in single-crystal and polycrystalline CdTe , 2016 .

[6]  S. Johnston,et al.  Long carrier lifetimes in large-grain polycrystalline CdTe without CdCl2 , 2016 .

[7]  S. Harvey,et al.  Phosphorus Diffusion Mechanisms and Deep Incorporation in Polycrystalline and Single-Crystalline CdTe , 2016 .

[8]  W. Metzger,et al.  First-principles study of roles of Cu and Cl in polycrystalline CdTe , 2016 .

[9]  Hongbin Wu,et al.  Organic solar cells: Going green , 2016, Nature Energy.

[10]  S. Sivananthan,et al.  In Situ Arsenic Doping of CdTe/Si by Molecular Beam Epitaxy , 2015, Journal of Electronic Materials.

[11]  S. Harvey,et al.  Phosphorus doping of polycrystalline CdTe by diffusion , 2015, 2015 IEEE 42nd Photovoltaic Specialist Conference (PVSC).

[12]  D. Kuciauskas,et al.  Quantitative determination of grain boundary recombination velocity in CdTe by combination of cathodoluminescence measurements and numerical simulations , 2015, 2015 IEEE 42nd Photovoltaic Specialist Conference (PVSC).

[13]  Douglas M. Bishop,et al.  The impact of sodium on the sub-bandgap states in CZTSe and CZTS , 2015 .

[14]  Sanjay Singh,et al.  Enhanced power factor and reduced thermal conductivity of a half-Heusler derivative Ti9Ni7Sn8: A bulk nanocomposite thermoelectric material , 2015 .

[15]  D. Levi,et al.  Theoretical analysis of effects of deep level, back contact, and absorber thickness on capacitance–voltage profiling of CdTe thin-film solar cells , 2012 .

[16]  Suhuai Wei,et al.  Carrier density and compensation in semiconductors with multiple dopants and multiple transition energy levels: Case of Cu impurities in CdTe , 2011 .

[17]  J. Sites,et al.  Cadmium Telluride Solar Cells , 2011 .

[18]  Manfred Martin,et al.  Probing Diffusion Kinetics with Secondary Ion Mass Spectrometry , 2009 .

[19]  R. Birkmire,et al.  Design of a vapor transport deposition process for thin film materials , 2006 .

[20]  D. Levi,et al.  Time-resolved photoluminescence studies of CdTe solar cells , 2003 .

[21]  W. Shafarman,et al.  Chemical surface deposition of ultra-thin cadmium sulfide films for high performance and high cadmium utilization , 2003, 3rd World Conference onPhotovoltaic Energy Conversion, 2003. Proceedings of.

[22]  Su-Huai Wei,et al.  Chemical trends of defect formation and doping limit in II-VI semiconductors: The case of CdTe , 2002 .

[23]  L. Tjeng,et al.  Charge fluctuations and image potential at oxide-metal interfaces , 2002 .

[24]  M. Fiederle,et al.  High temperature defect structure of Cd- and Te-rich CdTe , 2001, 2001 IEEE Nuclear Science Symposium Conference Record (Cat. No.01CH37310).

[25]  S. Zhang,et al.  Theoretical Study of Doping Limits of CdTe: Preprint , 2001 .

[26]  Y. Marfaing Impurity doping and compensation mechanisms in CdTe , 2001 .

[27]  A. Zunger,et al.  Calculated natural band offsets of all II–VI and III–V semiconductors: Chemical trends and the role of cation d orbitals , 1998 .

[28]  R. Evrard,et al.  Photoluminescence of CdTe doped with arsenic and antimony acceptors , 1995 .

[29]  Meyer,et al.  Identification of the cadmium vacancy in CdTe by electron paramagnetic resonance. , 1993, Physical review. B, Condensed matter.

[30]  D. E. Cooper,et al.  p‐type arsenic doping of CdTe and HgTe/CdTe superlattices grown by photoassisted and conventional molecular‐beam epitaxy , 1990 .

[31]  C. W. Magee,et al.  Secondary Ion Mass Spectrometry: A Practical Handbook for Depth Profiling and Bulk Impurity Analysis , 1989 .

[32]  J. G. Broerman,et al.  Controlled p-type impurity doping of HgTe-CdTe superlattices during molecular-beam-epitaxial growth , 1989 .

[33]  M. Aven,et al.  Some Diffusion and Solubility Measurements of Cu in CdTe , 1968 .

[34]  M. Lorenz,et al.  Impurity Segregation in Binary Compounds , 1966 .

[35]  H. Seltz,et al.  A Thermodynamic Study of the Lead-Antimony System , 1939 .

[36]  P. Schuck,et al.  3D Lifetime Tomography Reveals How CdCl2 Improves Recombination Throughout CdTe Solar Cells , 2017, Advanced materials.

[37]  B. McCandless CdTe Solar Cells: Processing Limits and Defect Chemistry Effects on Open Circuit Voltage , 2013 .

[38]  H. Tatsuoka,et al.  Luminescent Properties of Sb Doped CdTe Grown by Hot‐Wall Epitaxy , 2002 .

[39]  Su-Huai Wei,et al.  First‐Principles Study of Doping Limits of CdTe , 2002 .

[40]  David Cahen,et al.  Effects of Sodium on Polycrystalline Cu(In,Ga)Se2 and Its Solar Cell Performance , 1998 .

[41]  Castner Tg,et al.  Critical behavior of the electron-paramagnetic-resonance linewidth of a spin-1/2 two-dimensional antiferromagnet. , 1993 .

[42]  V. Lazarev,et al.  Sublimation thermodynamics of Cd3P2 , 1976 .

[43]  M. Aven,et al.  Physics and chemistry of II-VI compounds , 1967 .