Diffusion and Separation of H2, CH4, CO2, and N2 in Diamond-Like Frameworks

We use grand canonical Monte Carlo and molecular dynamics simulations to systematically investigate the membrane-based separation performance of four diamond-like frameworks (PAF-1, Diamondyne, TND-1, and TND-2) for CO2/H2, CO2/N2, CO2/CH4 and CH4/H2 mixtures. Diamondyne (also named D-Carbon) shows high membrane selectivity for gas mixtures of CO2/H2, CO2/N2, CO2/CH4, and CH4/H2 compared to MOF and COF membranes. Comprehensively considering the permeation selectivity and permeability, we find that diamondyne and TND-2 are promising candidates for CO2/H2 and CO2/N2 separation. Moreover, diamondyne and TND-2 exceed the Robeson’s upper line for CO2/N2 mixtures. The separation performance of diamondyne for CO2/CH4 mixtures also exceeds the Robeson’s upper limitation, indicating that diamondyne is also a promising candidate for separation of the CO2/CH4 mixtures. It is expected that this work can provide guidance and reference for development and design of high selectivity membranes for gas mixtures.

[1]  D. Sholl,et al.  Molecular Simulations and Theoretical Predictions for Adsorption and Diffusion of CH4/H2 and CO2/CH4 Mixtures in ZIFs , 2011 .

[2]  Wenchuan Wang,et al.  Targeted synthesis of a porous aromatic framework with high stability and exceptionally high surface area. , 2009, Angewandte Chemie.

[3]  David S. Sholl,et al.  Progress, Opportunities, and Challenges for Applying Atomically Detailed Modeling to Molecular Adsorption and Transport in Metal−Organic Framework Materials , 2009 .

[4]  A. Skoulidas Molecular dynamics simulations of gas diffusion in metal-organic frameworks: argon in CuBTC. , 2004, Journal of the American Chemical Society.

[5]  Rees B Rankin,et al.  Adsorption and Diffusion of Light Gases in ZIF-68 and ZIF-70: A Simulation Study , 2009 .

[6]  D. Cao,et al.  Tetrahedral node diamondyne frameworks for CO2 adsorption and separation , 2014 .

[7]  G. Zhu,et al.  High-Capacity Hydrogen Storage in Porous Aromatic Frameworks with Diamond-like Structure , 2010 .

[8]  D. Sholl,et al.  Assessment of a Metal−Organic Framework Membrane for Gas Separations Using Atomically Detailed Calculations: CO2, CH4, N2, H2 Mixtures in MOF-5 , 2009 .

[9]  Seda Keskin Atomistic Simulations for Adsorption, Diffusion, and Separation of Gas Mixtures in Zeolite Imidazolate Frameworks , 2011 .

[10]  M. Carreon,et al.  Highly permeable zeolite imidazolate framework-8 membranes for CO2/CH4 separation. , 2010, Journal of the American Chemical Society.

[11]  D. Sholl,et al.  Self-diffusion and transport diffusion of light gases in metal-organic framework materials assessed using molecular dynamics simulations. , 2005, The journal of physical chemistry. B.

[12]  G. Garberoglio,et al.  Computer simulation of the adsorption of light gases in covalent organic frameworks. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[13]  G. Garberoglio,et al.  Adsorption and diffusion of hydrogen and methane in 2D covalent organic frameworks , 2008 .

[14]  D. Cao,et al.  A porous diamond carbon framework: a new carbon allotrope with extremely high gas adsorption and mechanical properties , 2013 .

[15]  Xiaoping Yang,et al.  From Inorganic to Organic Strategy To Design Porous Aromatic Frameworks for High-Capacity Gas Storage , 2015 .

[16]  Jianzhong Wu,et al.  Self-diffusion of methane in single-walled carbon nanotubes at sub- and supercritical conditions. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[17]  Alexis T. Bell,et al.  Transport diffusivity of methane in silicalite from equilibrium and nonequilibrium simulations , 1993 .

[18]  Steve Plimpton,et al.  Fast parallel algorithms for short-range molecular dynamics , 1993 .

[19]  J. Miyawaki,et al.  Adsorption properties of templated mesoporous carbon (CMK-1) for nitrogen and supercritical methane - Experiment and GCMC simulation , 2002 .

[20]  D. Cao,et al.  Effect of Li Doping on Diffusion and Separation of Hydrogen and Methane in Covalent Organic Frameworks , 2012 .

[21]  R. Krishna,et al.  In silico screening of metal-organic frameworks in separation applications. , 2011, Physical chemistry chemical physics : PCCP.

[22]  Xuan Peng,et al.  Carbon Dioxide Capture by PAFs and an Efficient Strategy To Fast Screen Porous Materials for Gas Separation , 2013 .

[23]  L. Tei,et al.  Theoretical prediction of high pressure methane adsorption in porous aromatic frameworks (PAFs). , 2012, Langmuir : the ACS journal of surfaces and colloids.

[24]  Xuan Peng,et al.  Computer simulations for the adsorption and separation of CO2/CH4/H2/N2 gases by UMCM-1 and UMCM-2 metal organic frameworks , 2011 .

[25]  J. Falconer,et al.  SAPO-34 membranes for CO2/CH4 separation , 2004 .

[26]  D. Sholl,et al.  Molecular Dynamics Simulations of Self-Diffusivities, Corrected Diffusivities, and Transport Diffusivities of Light Gases in Four Silica Zeolites To Assess Influences of Pore Shape and Connectivity , 2003 .

[27]  Randall Q. Snurr,et al.  Object-oriented Programming Paradigms for Molecular Modeling , 2003 .

[28]  J. Ilja Siepmann,et al.  Vapor–liquid equilibria of mixtures containing alkanes, carbon dioxide, and nitrogen , 2001 .

[29]  Sankar Nair,et al.  Efficient calculation of diffusion limitations in metal organic framework materials: a tool for identifying materials for kinetic separations. , 2010, Journal of the American Chemical Society.

[30]  D. Sholl,et al.  Adsorption and diffusion of carbon dioxide and nitrogen through single-walled carbon nanotube membranes. , 2006, The Journal of chemical physics.

[31]  L. Robeson,et al.  The upper bound revisited , 2008 .

[32]  Seda Keskin Adsorption, Diffusion, and Separation of CH4/H2 Mixtures in Covalent Organic Frameworks: Molecular Simulations and Theoretical Predictions , 2012 .

[33]  C. Serre,et al.  Diffusion of Binary CO2/CH4 Mixtures in the MIL-47(V) and MIL-53(Cr) Metal–Organic Framework Type Solids: A Combination of Neutron Scattering Measurements and Molecular Dynamics Simulations , 2013 .

[34]  Abbie Trewin,et al.  Amorphous PAF-1: Guiding the Rational Design of Ultraporous Materials , 2014 .

[35]  Jianzhong Wu,et al.  Modeling the selectivity of activated carbons for efficient separation of hydrogen and carbon dioxide , 2005 .

[36]  M. Cossi,et al.  Monte Carlo modeling of carbon dioxide adsorption in porous aromatic frameworks. , 2014, Langmuir : the ACS journal of surfaces and colloids.

[37]  J. Ilja Siepmann,et al.  Transferable Potentials for Phase Equilibria. 1. United-Atom Description of n-Alkanes , 1998 .

[38]  Seda Keskin,et al.  Computational Screening of Porous Coordination Networks for Adsorption and Membrane-Based Gas Separations , 2014 .

[39]  D. Lévesque,et al.  Monte Carlo simulations of hydrogen adsorption in single-walled carbon nanotubes , 1998 .

[40]  S. L. Mayo,et al.  DREIDING: A generic force field for molecular simulations , 1990 .

[41]  Seda Keskin,et al.  Efficient methods for screening of metal organic framework membranes for gas separations using atomically detailed models. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[42]  Rajamani Krishna,et al.  In silico screening of zeolite membranes for CO2 capture , 2010 .

[43]  Seda Keskin Comparing Performance of CPO and IRMOF Membranes for Gas Separations Using Atomistic Models , 2010 .