Gabor Analysis and Algorithms

[1]  K. Seip Density theorems for sampling and interpolation in the Bargmann-Fock space I , 1992, math/9204238.

[2]  H. Feichtinger On a new Segal algebra , 1981 .

[3]  Akbar M. Sayeed,et al.  Delay-Doppler channel estimation with almost linear complexity: To Solomon Golomb for the occasion of his 80 birthday mazel tov , 2012, 2012 IEEE International Symposium on Information Theory Proceedings.

[4]  H. Feichtinger,et al.  Quantization of TF lattice-invariant operators on elementary LCA groups , 1998 .

[5]  James S. Walker,et al.  Music: Broken Symmetry, Geometry, and Complexity , 2010 .

[6]  D. Walnut Continuity properties of the Gabor frame operator , 1992 .

[7]  Karlheinz Gröchenig,et al.  Foundations of Time-Frequency Analysis , 2000, Applied and numerical harmonic analysis.

[8]  K. Gröchenig,et al.  Gabor Frames and Totally Positive Functions , 2011 .

[9]  T. Strohmer,et al.  Hyperbolic secants yield Gabor frames , 2002, math/0301134.

[10]  Bruno Torrésani,et al.  The Linear Time Frequency Analysis Toolbox , 2012, Int. J. Wavelets Multiresolution Inf. Process..

[11]  Erwin Riegler,et al.  Capacity Pre-Log of Noncoherent SIMO Channels Via Hironaka's Theorem , 2012, IEEE Transactions on Information Theory.

[12]  Peter L. Søndergaard,et al.  Gabor frames by sampling and periodization , 2007, Adv. Comput. Math..

[13]  M. Rieffel Projective Modules over Higher-Dimensional Non-Commutative Tori , 1988, Canadian Journal of Mathematics.

[14]  D. Spielman,et al.  Interlacing Families II: Mixed Characteristic Polynomials and the Kadison-Singer Problem , 2013, 1306.3969.

[15]  Deguang Han,et al.  The Balian–Low theorem for symplectic lattices in higher dimensions , 2002 .

[16]  K. Gröchenig,et al.  Wiener's lemma for twisted convolution and Gabor frames , 2003 .

[17]  J. Benedetto,et al.  Optimal Ambiguity Functions and Weil’s Exponential Sum Bound , 2011, 1107.1887.

[18]  A. Janssen Duality and Biorthogonality for Weyl-Heisenberg Frames , 1994 .

[19]  Karlheinz Gröchenig,et al.  Modulation spaces and pseudodifferential operators , 1999 .

[20]  H. Feichtinger,et al.  A Banach space of test functions for Gabor analysis , 1998 .

[21]  H. Feichtinger,et al.  Wiener amalgam spaces for the fundamental identity of Gabor analysis , 2005, math/0503364.

[22]  T. Strohmer,et al.  Gabor Analysis and Algorithms: Theory and Applications , 1997 .

[23]  C. Heil History and Evolution of the Density Theorem for Gabor Frames , 2007 .

[24]  F. Luef Projective modules over noncommutative tori are multi-window Gabor frames for modulation spaces , 2008, 0807.3170.

[25]  Richard Kronland-Martinet,et al.  Additivity of nonsimultaneous masking for short Gaussian-shaped sinusoids. , 2011, The Journal of the Acoustical Society of America.

[26]  Gerald Matz,et al.  Practical Estimation of Rapidly Varying Channels for OFDM Systems , 2011, IEEE Transactions on Communications.

[27]  H. Feichtinger Modulation Spaces: Looking Back and Ahead , 2006 .

[28]  A. Ron,et al.  Weyl-Heisenberg frames and Riesz bases in $L_2(\mathbb{R}^d)$ , 1997 .

[29]  Hans G. Feichtinger,et al.  A Guided Tour from Linear Algebra to the Foundations of Gabor Analysis , 2005 .

[30]  Dennis Gabor,et al.  Theory of communication , 1946 .

[31]  Y. Manin,et al.  Quantum Theta Functions and Gabor Frames for Modulation Spaces , 2008, 0809.2716.

[32]  Michiel Hazewinkel,et al.  METAPLECTIC OPERATORS ON ℂn , 2007 .

[33]  J.B. Allen,et al.  A unified approach to short-time Fourier analysis and synthesis , 1977, Proceedings of the IEEE.

[34]  Shamgar Gurevich,et al.  The Finite Harmonic Oscillator and Its Applications to Sequences, Communication, and Radar , 2008, IEEE Transactions on Information Theory.

[35]  Gianpaolo Evangelista,et al.  Phase vocoders with arbitrary frequency band selection , 2012 .

[36]  Yurii Lyubarskii Frames in the Bargmann space of entire functions , 1992 .

[37]  D. Walnut,et al.  Differentiation and the Balian-Low Theorem , 1994 .

[38]  H. Feichtinger,et al.  Banach spaces related to integrable group representations and their atomic decompositions, I , 1989 .

[39]  I. Daubechies,et al.  Gabor Time-Frequency Lattices and the Wexler-Raz Identity , 1994 .

[40]  Norbert Kaiblinger,et al.  Approximation of the Fourier Transform and the Dual Gabor Window , 2005 .

[41]  H. Feichtinger,et al.  Gabor analysis over finite Abelian groups , 2007, math/0703228.

[42]  F. Hlawatsch,et al.  Oversampled cosine modulated filter banks with perfect reconstruction , 1998 .

[43]  Jason Wexler,et al.  Discrete Gabor expansions , 1990, Signal Process..

[44]  P. Casazza,et al.  The Kadison–Singer Problem in mathematics and engineering , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[45]  Thomas Strohmer,et al.  Pseudodifferential operators and Banach algebras in mobile communications , 2006 .