Numerical design of a 3-D microsystem for bioparticle dielectrophoresis: The Pyramidal Microdevice

Abstract A device for the detection of bioparticles (latex beads, cells, proteins, DNA,…) present in a small volume of a liquid sample is described. Dielectrophoresis (DEP) is used to enhance the transport of bioparticles towards the reactive surface of the detector. A Pyramidal Microdevice (PM) is designed using numerical simulation. Unlike conventional coplanar electrode microchips, this original 3D configuration is able to collect particles on a surface for both positive and negative DEP. Numerical simulations show the location of the collection zones in the PM according to the DEP mode applied. PM performance is evaluated with the calculation of the collection kinetics. The influence of the voltage is studied. Experiments on PM with latex microparticles confirm calculations. Their replacement by DNA molecules attests to the feasibility of a PM collecting such extremely small particles using DEP.

[1]  A. M. Benselama,et al.  Calcul de la force diélectrophorétique dans les microsystèmes biologiques: comparaison du modèle dipolaire avec le modèle du tenseur de Maxwell , 2006 .

[2]  W. Benecke,et al.  Linear motion of dielectric particles and living cells in microfabricated structures induced by traveling electric fields , 1991, [1991] Proceedings. IEEE Micro Electro Mechanical Systems.

[3]  G van den Engh,et al.  Trapping of DNA in nonuniform oscillating electric fields. , 1998, Biophysical journal.

[4]  H. Morgan,et al.  Dielectrophoresis of DNA: time- and frequency-dependent collections on microelectrodes , 2006, IEEE Transactions on NanoBioscience.

[5]  Castellanos,et al.  Fluid flow induced by nonuniform ac electric fields in electrolytes on microelectrodes. I. Experimental measurements , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[6]  Masao Washizu,et al.  Molecular dielectrophoresis of bio-polymers , 1992, Conference Record of the 1992 IEEE Industry Applications Society Annual Meeting.

[7]  Castellanos,et al.  Fluid flow induced by nonuniform ac electric fields in electrolytes on microelectrodes. II. A linear double-layer analysis , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[8]  H. Morgan,et al.  Ac electrokinetics: a survey of sub-micrometre particle dynamics , 2000 .

[9]  H. A. Pohl,et al.  Dielectrophoresis: The Behavior of Neutral Matter in Nonuniform Electric Fields , 1978 .

[10]  Thomas B. Jones,et al.  Electromechanics of Particles , 1995 .

[11]  Chester T. O'Konski,et al.  ELECTRIC PROPERTIES OF MACROMOLECULES. V. THEORY OF IONIC POLARIZATION IN POLYELECTROLYTES , 1960 .

[12]  H. Morgan,et al.  Measuring the frequency dependent polarizability of colloidal particles from dielectrophoretic collection data , 2001 .

[13]  H. Morgan,et al.  Ac electrokinetics: a review of forces in microelectrode structures , 1998 .

[14]  Ulrich Zimmermann,et al.  Electro-rotation: development of a technique for dielectric measurements on individual cells and particles , 1988 .

[15]  T. Jones,et al.  Frequency-dependent electromechanics of aqueous liquids: electrowetting and dielectrophoresis. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[16]  Hywel Morgan,et al.  Dielectrophoretic investigations of sub-micrometre latex spheres , 1997 .

[17]  H. Morgan,et al.  Electrohydrodynamics and dielectrophoresis in microsystems: scaling laws , 2003 .