Ocean Renewable Energy Potential, Technology, and Deployments: A Case Study of Brazil

This study, firstly, provides an up-to-date global review of the potential, technologies, prototypes, installed capacities, and projects related to ocean renewable energy including wave, tidal, and thermal, and salinity gradient sources. Secondly, as a case study, we present a preliminary assessment of the wave, ocean current, and thermal gradient sources along the Brazilian coastline. The global status of the technological maturity of the projects, their different stages of development, and the current global installed capacity for different sources indicate the most promising technologies considering the trend of global interest. In Brazil, despite the extensive coastline and the fact that almost 82% of the Brazilian electricity matrix is renewable, ocean renewable energy resources are still unexplored. The results, using oceanographic fields produced by numerical models, show the significant potential of ocean thermal and wave energy sources in the northern and southern regions of the Brazilian coast, which could contribute as complementary supply sources in the national electricity matrix.

[1]  Jin-Hak Yi,et al.  Review of tidal characteristics of Uldolmok Strait and optimal design of blade shape for horizontal axis tidal current turbines , 2019, Renewable and Sustainable Energy Reviews.

[2]  Ali Altaee,et al.  Modelling and optimization of modular system for power generation from a salinity gradient , 2019, Renewable Energy.

[3]  Daolin Xu,et al.  Embedded Power Take-Off in hinged modularized floating platform for wave energy harvesting and pitch motion suppression , 2019, Renewable Energy.

[4]  L. Gato,et al.  Test results of a 30 kW self-rectifying biradial air turbine-generator prototype , 2019, Renewable and Sustainable Energy Reviews.

[5]  Y. Si,et al.  Review on configuration and control methods of tidal current turbines , 2019, Renewable and Sustainable Energy Reviews.

[6]  J.M.R. Gorle,et al.  Modulated circulation control around the blades of a vertical axis hydrokinetic turbine for flow control and improved performance , 2019, Renewable and Sustainable Energy Reviews.

[7]  K. Haas,et al.  Wave energy resource classification system for US coastal waters , 2019, Renewable & Sustainable Energy Reviews.

[8]  J. A. Souza,et al.  Overtopping device numerical study: Openfoam solution verification and evaluation of curved ramps performances , 2019, International Journal of Heat and Mass Transfer.

[9]  Vengatesan Venugopal,et al.  Offshore Renewable Energy: Ocean Waves, Tides and Offshore Wind , 2019 .

[10]  M. Piggott,et al.  Utilising the flexible generation potential of tidal range power plants to optimise economic value , 2019, Applied Energy.

[11]  Wanan Sheng,et al.  Motion and performance of BBDB OWC wave energy converters: I, hydrodynamics , 2019, Renewable Energy.

[12]  C. Guedes Soares,et al.  Design tradeoffs of an oil-hydraulic power take-off for wave energy converters , 2018, Renewable Energy.

[13]  E. Curcio,et al.  Reverse Electrodialysis for energy production from natural river water and seawater , 2018, Energy.

[14]  Eduardo de Paula Kirinus,et al.  Long-term simulations for ocean energy off the Brazilian coast , 2018, Energy.

[15]  Chieh Hsieh,et al.  Marine current power with cross-stream active mooring: Part II , 2018, Renewable Energy.

[16]  Ramato Ashu Tufa,et al.  Progress and prospects in reverse electrodialysis for salinity gradient energy conversion and storage , 2018, Applied Energy.

[17]  J. Ringwood,et al.  Wave energy resource variation off the west coast of Ireland and its impact on realistic wave energy converters’ power absorption , 2018, Applied Energy.

[18]  Susana M. Vieira,et al.  Short-term prediction in an Oscillating Water Column using Artificial Neural Networks , 2018, 2018 International Joint Conference on Neural Networks (IJCNN).

[19]  G. Medero,et al.  An Overview of Hydropower Reservoirs in Brazil: Current Situation, Future Perspectives and Impacts of Climate Change , 2018 .

[20]  Xu Gang,et al.  Hydrodynamic analysis of vertical-axis tidal current turbine with surging and yawing coupled motions , 2018 .

[21]  I. M. Viola,et al.  Numerical investigation of vertical-axis tidal turbines with sinusoidal pitching blades , 2018 .

[22]  E. Filippas,et al.  Semi-activated oscillating hydrofoil as a nearshore biomimetic energy system in waves and currents , 2018 .

[23]  Liércio André Isoldi,et al.  Geometric evaluation of the main operational principle of an overtopping wave energy converter by means of Constructal Design , 2018 .

[24]  M. Piggott,et al.  Optimising tidal range power plant operation , 2018 .

[25]  S. Neill,et al.  The wave and tidal resource of Scotland , 2017 .

[26]  Luca Bruzzone,et al.  Mechanical design and simulation of an onshore four-bar wave energy converter , 2017 .

[27]  Yong Wang,et al.  Energy extraction and hydrodynamic behavior analysis by an oscillating hydrofoil device , 2017 .

[28]  R. Alonso,et al.  Wave and tidal energy resource assessment in Uruguayan shelf seas , 2017 .

[29]  Dong-Zi Pan,et al.  The ebb and flow of tidal barrage development in Zhejiang Province, China , 2017 .

[30]  Roger Alexander Falconer,et al.  Sensitivity of tidal lagoon and barrage hydrodynamic impacts and energy outputs to operational characteristics , 2017 .

[31]  John L. Zhou,et al.  Pressure retarded osmosis process for power generation: Feasibility, energy balance and controlling parameters , 2017 .

[32]  Gonzalo Tampier,et al.  Numerical analysis of a diffuser-augmented hydrokinetic turbine , 2017 .

[33]  Xiaofan Li,et al.  Mechanical Motion Rectifier Based Efficient Power Takeoff for Ocean Wave Energy Harvesting , 2017 .

[34]  Søren Nielsen,et al.  Gyroscopic power take-off wave energy point absorber in irregular sea states , 2017 .

[35]  Che-Chih Tsao,et al.  Marine current power with Cross-stream Active Mooring: Part I , 2017 .

[36]  G. Houlsby,et al.  An investigation of ducted and open-centre tidal turbines employing CFD-embedded BEM , 2017 .

[37]  Sverker Molander,et al.  Introducing ocean energy industries to a busy marine environment , 2017 .

[38]  Sarah Gallagher,et al.  Analytical and computational modelling for wave energy systems: the example of oscillating wave surge converters , 2017, Acta Mechanica Sinica.

[39]  Lei Zuo,et al.  Design, fabrication, simulation and testing of an ocean wave energy converter with mechanical motion rectifier , 2017 .

[40]  R. He,et al.  Marine hydrokinetic energy in the gulf stream off North Carolina: An assessment using observations and ocean circulation models , 2017 .

[41]  Siming Zheng,et al.  Analytical study on hydrodynamic performance of a raft-type wave power device , 2017, Journal of Marine Science and Technology.

[42]  Ying Cui,et al.  Experimental study on overtopping performance of a circular ramp wave energy converter , 2017 .

[43]  Luiz Antonio de Souza Ribeiro,et al.  Analysis of a Tidal Power Plant in the Estuary of Bacanga in Brazil Taking Into Account the Current Conditions and Constraints , 2017, IEEE Transactions on Sustainable Energy.

[44]  Eduardo de Paula Kirinus,et al.  Estimate of the Wave Climate on the Most Energetic Locations of the South-Southeastern Brazilian Shelf , 2017 .

[45]  Diana L. Bull,et al.  Levelized cost of energy for a Backward Bent Duct Buoy , 2016 .

[46]  Pedro Pires,et al.  Tank testing of an inherently phase-controlled wave energy converter , 2016 .

[47]  C. Winter,et al.  Practical global salinity gradient energy potential , 2016 .

[48]  George A. Aggidis,et al.  Tidal range technologies and state of the art in review , 2016 .

[49]  Tsumoru Shintake,et al.  Experimental verification of a floating ocean-current turbine with a single rotor for use in Kuroshio currents , 2016 .

[50]  B. Teng,et al.  An experimental investigation of hydrodynamics of a fixed OWC Wave Energy Converter , 2016 .

[51]  P. Gikas,et al.  Salinity gradient energy potential at the hyper saline Urmia Lake – ZarrinehRud River system in Iran , 2016 .

[52]  Hyeon-Ju Kim,et al.  Thermoeconomic analysis of an ocean thermal energy conversion plant , 2016 .

[53]  Sui Zhang,et al.  Progress in pressure retarded osmosis (PRO) membranes for osmotic power generation , 2015 .

[54]  Marco Aurélio dos Santos,et al.  Emissions of greenhouse gases in terrestrial areas pre-existing to hydroelectric plant reservoirs in the Amazon: The case of Belo Monte hydroelectric plant , 2015 .

[55]  C. Guedes Soares,et al.  High resolution local wave energy modelling in the Iberian Peninsula , 2015 .

[56]  Mats Leijon,et al.  Parametric Study of the Power Absorption for a Linear Generator Wave Energy Converter , 2015 .

[57]  Eduardo de Paula Kirinus,et al.  Viability of the application of marine current power generators in the south Brazilian shelf , 2015 .

[58]  Pragasen Pillay,et al.  Osmotic power potential in remote regions of Quebec , 2015 .

[59]  Antonio Carlos Fernandes,et al.  Hydrokinetic energy harvesting by an innovative vertical axis current turbine , 2015 .

[60]  Luiz A. de S. Ribeiro,et al.  Optimization of electricity generation of a tidal power plant with reservoir constraints , 2015 .

[61]  Fredolin Tangang,et al.  Wave energy potential assessment in the central and southern regions of the South China Sea , 2015 .

[62]  Peter C. Chu,et al.  Site selection of ocean current power generation from drifter measurements , 2015 .

[63]  A. Mazzino,et al.  Performance evaluation of Wavewatch III in the Mediterranean Sea , 2015 .

[64]  Xinping Chen,et al.  Offshore wave energy resource assessment in the East China Sea , 2015 .

[65]  S. Neill,et al.  Resource assessment for future generations of tidal-stream energy arrays , 2015 .

[66]  A. Osorio,et al.  Salinity gradient energy potential in Colombia considering site specific constraints , 2015 .

[67]  H. Fritz,et al.  Evaluating the potential for energy extraction from turbines in the gulf stream system , 2014 .

[68]  Hakan Aydin,et al.  Off-design performance analysis of a closed-cycle ocean thermal energy conversion system with solar thermal preheating and superheating , 2014 .

[69]  M. Benbouzid,et al.  Optimal control for a self-reacting point absorber: A one-body equivalent model approach , 2014, 2014 International Power Electronics and Application Conference and Exposition.

[70]  Y. Ikegami,et al.  Design Optimization of Shore-Based Low Temperature Thermal Desalination System Utilizing the Ocean Thermal Energy , 2014 .

[71]  Liang Zhang,et al.  Experimental research on tidal current vertical axis turbine with variable-pitch blades , 2014 .

[72]  Min-Hsiung Yang,et al.  Analysis of optimization in an OTEC plant using organic Rankine cycle , 2014 .

[73]  João C.C. Henriques,et al.  Model-prototype similarity of oscillating-water-column wave energy converters , 2014 .

[74]  Andrés F. Osorio,et al.  Ocean thermal energy resources in Colombia , 2014 .

[75]  Paula B. Garcia-Rosa,et al.  Wave-to-Wire Model and Energy Storage Analysis of an Ocean Wave Energy Hyperbaric Converter , 2014, IEEE Journal of Oceanic Engineering.

[76]  Charles James Lemckert,et al.  Osmotic power with Pressure Retarded Osmosis: Theory, performance and trends – A review , 2014 .

[77]  Gérard C. Nihous,et al.  An Assessment of Global Ocean Thermal Energy Conversion Resources With a High-Resolution Ocean General Circulation Model , 2013 .

[78]  Jon Andreu,et al.  Review of wave energy technologies and the necessary power-equipment , 2013 .

[79]  Tara Hooper,et al.  Tidal barrages in the UK: Ecological and social impacts, potential mitigation, and tools to support barrage planning , 2013 .

[80]  Felice Arena,et al.  On Design and Building of a U-OWC Wave Energy Converter in the Mediterranean Sea: A Case Study , 2013 .

[81]  Chandan Dinkar Chaudhari,et al.  Numerical Analysis Of Venturi Ducted Horizontal Axis Wind Turbine For Efficient Power Generation. , 2013 .

[82]  M. Rafiuddin Ahmed,et al.  Experimental studies on a closed cycle demonstration OTEC plant working on small temperature difference , 2013 .

[83]  Wen-Cheng Liu,et al.  Modeling assessment of tidal current energy at Kinmen Island, Taiwan , 2013 .

[84]  You Ying,et al.  Wave energy converter of inverse pendulum with double action power take off , 2013 .

[85]  Ali Rashid,et al.  Status and potentials of tidal in-stream energy resources in the southern coasts of Iran: A case study , 2012 .

[86]  Jai N. Goundar,et al.  Marine current energy resource assessment and design of a marine current turbine for Fiji , 2012 .

[87]  Mohammad-Reza Alam,et al.  Nonlinear analysis of an actuated seafloor-mounted carpet for a high-performance wave energy extraction , 2012, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[88]  Sverker Molander,et al.  Renewable ocean energy in the Western Indian Ocean , 2012 .

[89]  Ye Li,et al.  A synthesis of numerical methods for modeling wave energy converter-point absorbers , 2012 .

[90]  George A. Aggidis,et al.  Tidal range turbines and generation on the Solway Firth , 2012 .

[91]  Roger Alexander Falconer,et al.  Estimation of annual energy output from a tidal barrage using two different methods , 2012 .

[92]  R. Yemm,et al.  Pelamis: experience from concept to connection , 2012, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[93]  T. Heath,et al.  A review of oscillating water columns , 2012, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[94]  Philippe Viarouge,et al.  Prototype testing of a hydrokinetic turbine based on oscillating hydrofoils , 2011 .

[95]  O. Keysan,et al.  A direct drive permanent magnet generator design for a tidal current turbine(SeaGen) , 2011, 2011 IEEE International Electric Machines & Drives Conference (IEMDC).

[96]  I. D. da Silveira,et al.  Is the Brazil Current eddy‐dominated to the north of 20°S? , 2011 .

[97]  G Jan Harmsen,et al.  Electrical power from sea and river water by reverse electrodialysis: a first step from the laboratory to a real power plant. , 2010, Environmental science & technology.

[98]  Paula B. Garcia-Rosa,et al.  Phase control strategy for a wave energy hyperbaric converter , 2010 .

[99]  Sander M. Calisal,et al.  Three-dimensional effects and arm effects on modeling a vertical axis tidal current turbine , 2010 .

[100]  Byung Ho Choi,et al.  Lake Sihwa tidal power plant project , 2010 .

[101]  John E. Quaicoe,et al.  Hydrokinetic energy conversion systems and assessment of horizontal and vertical axis turbines for river and tidal applications: A technology status review , 2009 .

[102]  E. Rogers,et al.  Semiempirical Dissipation Source Functions for Ocean Waves. Part I: Definition, Calibration, and Validation , 2009, 0907.4240.

[103]  T. Holt,et al.  The potential for power production from salinity gradients by pressure retarded osmosis , 2009 .

[104]  S. Estefen,et al.  Alternative concept for tidal power plant with reservoir restrictions , 2009 .

[105]  J. Kofoed,et al.  Measurements of overtopping flow time series on the Wave Dragon, wave energy converter , 2009 .

[106]  Peter Frigaard,et al.  Wave pressure acting on a seawave slot-cone generator , 2008 .

[107]  Anthony F. Molland,et al.  The prediction of the hydrodynamic performance of marine current turbines , 2008 .

[108]  António F.O. Falcão,et al.  Phase control through load control of oscillating-body wave energy converters with hydraulic PTO system , 2008 .

[109]  Gérard C. Nihous,et al.  A Preliminary Assessment of Ocean Thermal Energy Conversion Resources , 2007 .

[110]  D. Kerr Marine energy , 2007, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[111]  P. Frigaard,et al.  Prototype Testing of the Wave Energy Converter Wave Dragon , 2006 .

[112]  A. Bahaj,et al.  Power output performance characteristics of a horizontal axis marine current turbine , 2006 .

[113]  Gérard C. Nihous,et al.  An Order-of-Magnitude Estimate of Ocean Thermal Energy Conversion Resources , 2005 .

[114]  J. Fischer,et al.  The shallow and deep western boundary circulation of the South Atlantic at 5-11°S , 2005 .

[115]  Markus Mueller,et al.  Electrical generators for direct drive wave energy converters , 2002 .

[116]  R. Fujita,et al.  Renewable energy from the ocean , 2002 .

[117]  Matthew H. England,et al.  On the water masses and mean circulation of the South Atlantic Ocean , 1999 .

[118]  Gurvan Madec,et al.  A global ocean mesh to overcome the North Pole singularity , 1996 .

[119]  W. Schmitz On the interbasin‐scale thermohaline circulation , 1995 .

[120]  T. Hammons Tidal Power , 1993, Nature.

[121]  S P Potter,et al.  Energy supply. , 1973, Science.

[122]  Segen F. Estefen,et al.  A geometrical optimization method applied to a heaving point absorber wave energy converter , 2018 .

[123]  Chuyang Y. Tang,et al.  Recent developments and future perspectives of reverse electrodialysis technology: A review , 2018 .

[124]  Cameron Johnstone,et al.  Workshop on identification of future emerging technologies in the ocean energy sector: JRC Conference and Workshop Reports , 2018 .

[125]  Elisabetta Tedeschi,et al.  Review of control strategies for wave energy conversion systems and their validation: the wave-to-wire approach , 2018 .

[126]  Emre Ozkop,et al.  Control, power and electrical components in wave energy conversion systems: A review of the technologies , 2017 .

[127]  Omar Yaakob,et al.  Numerical Simulation of Wave Flow Over the Overtopping Breakwater for Energy Conversion (OBREC) Device , 2017 .

[128]  J. Kofoed,et al.  Erratum to: Handbook of Ocean Wave Energy , 2017 .

[129]  Wei Han,et al.  Research on the mechanism of power extraction performance for flapping hydrofoils , 2017 .

[130]  Hyeon-Ju Kim,et al.  Dual-use open cycle ocean thermal energy conversion (OC-OTEC) using multiple condensers for adjustable power generation and seawater desalination , 2016 .

[131]  B. Cazzolato,et al.  Three-tether axisymmetric wave energy converter: estimation of energy delivery , 2016 .

[132]  Eduardo von Sperling,et al.  Hydropower in Brazil: Overview of Positive and Negative Environmental Aspects , 2012 .

[133]  J. Niedzwecki,et al.  Estimating the potential of ocean wave power resources , 2011 .

[134]  D. Li,et al.  An overview of ocean renewable energy in China , 2011 .

[135]  Barstow,et al.  WorldWaves Wave Energy Resource Assessments from the Deep Ocean to the Coast , 2011 .

[136]  Trondheim,et al.  ASSESSING THE GLOBAL WAVE ENERGY POTENTIAL , 2010 .

[137]  C. Amante,et al.  ETOPO1 arc-minute global relief model : procedures, data sources and analysis , 2009 .

[138]  Stein Erik Skilhagen,et al.  Power Production based on Osmotic Pressure , 2009 .

[139]  A. Cornett A GLOBAL WAVE ENERGY RESOURCE ASSESSMENT , 2008 .

[140]  Segen F. Estefen,et al.  Experimental and Numerical Studies of the Wave Energy Hyberbaric Device for Electricity Production , 2008 .

[141]  R. Rodrigues,et al.  Seasonal Variability of the South Equatorial Current Bifurcation in the Atlantic Ocean: A Numerical Study , 2007 .

[142]  Aurélien Babarit,et al.  Experimental Validation of the Performances of the SEAREV Wave Energy Converter with Real-Time Latching Control. , 2007 .

[143]  Segen F. Estefen,et al.  Wave Climate Analysis for a Wave Energy Conversion Application in Brazil , 2007 .

[144]  Segen F. Estefen,et al.  Wave Energy Hyperbaric Device for Electricity Production , 2007 .

[145]  Henk Polinder,et al.  Linear generator systems for wave energy conversion , 2007 .

[146]  Haruo Uehara,et al.  THE PRESENT STATUS AND FUTURE OF OCEAN THERMAL ENERGY CONVERSION , 1995 .

[147]  L. Stramma,et al.  Upper-level circulation in the South Atlantic Ocean , 1991 .

[148]  G. C. Nihous,et al.  Conceptual Design of an Open-Cycle OTEC Plant for the Production of Electricity and Fresh Water in a Pacific Island , 1990 .

[149]  Knut Bønke,et al.  Prototype Wave Power Stations in Norway , 1987 .

[150]  Tor Onshus,et al.  The Norwegian wave-power buoy project , 1982 .

[151]  Hiroki Kobayashi The Present Status and Features of OTEC and Recent Aspects of Thermal Energy Conversion Technologies , 2022 .