Technical Note - On Estimating Quantile Sensitivities via Infinitesimal Perturbation Analysis
暂无分享,去创建一个
[1] Ing Rj Ser. Approximation Theorems of Mathematical Statistics , 1980 .
[2] R. Serfling. Approximation Theorems of Mathematical Statistics , 1980 .
[3] R. Suri,et al. Perturbation analysis gives strongly consistent sensitivity estimates for the M/G/ 1 queue , 1988 .
[4] Paul Glasserman,et al. Gradient Estimation Via Perturbation Analysis , 1990 .
[5] Michael C. Fu,et al. Conditional Monte Carlo , 1997 .
[6] M. Fu,et al. Conditional Monte Carlo Gradient Estimation , 1997 .
[7] P. Glasserman,et al. Variance Reduction Techniques for Estimating Value-at-Risk , 2000 .
[8] L. Jeff Hong,et al. Kernel estimation for quantile sensitivities , 2007, 2007 Winter Simulation Conference.
[9] Michael C. Fu,et al. Conditional Monte Carlo Estimation of Quantile Sensitivities , 2009, Manag. Sci..
[10] L. Jeff Hong,et al. Estimating Quantile Sensitivities , 2009, Oper. Res..
[11] L. Jeff Hong,et al. Simulating Sensitivities of Conditional Value at Risk , 2009, Manag. Sci..
[12] B. Heidergott,et al. Sensitivity Analysis of Quantiles , 2012 .
[13] B. Heidergott,et al. A Measure-Valued Differentiation Approach to Sensitivity Analysis of Quantiles , 2013 .