Microporous polyphenylenes with tunable pore size for hydrogen storage.

A series of highly porous polymers with similar BET surface areas of higher than 1000 m(2) g(-1) but tunable pore ranging from 0.7 nm to 0.9 nm were synthesized through facile ethynyl trimerization reaction to demonstrate the surface property-hydrogen adsorption relationship.

[1]  Arne Thomas,et al.  Conjugated Microporous Polymer Networks via Yamamoto Polymerization , 2009 .

[2]  A. Cooper,et al.  Microporous poly(tri(4-ethynylphenyl)amine) networks:synthesis, properties, and atomistic simulation , 2009 .

[3]  Michael O’Keeffe,et al.  A crystalline imine-linked 3-D porous covalent organic framework. , 2009, Journal of the American Chemical Society.

[4]  B. Dorney,et al.  Nanoporous Polymers Containing Stereocontorted Cores for Hydrogen Storage , 2009 .

[5]  M. Antonietti,et al.  Microporous Conjugated Poly(thienylene arylene) Networks , 2009 .

[6]  Neil L. Campbell,et al.  High surface area amorphous microporous poly(aryleneethynylene) networks using tetrahedral carbon- and silicon-centred monomers. , 2009, Chemical communications.

[7]  Jingshe Song,et al.  Polymers of Intrinsic Microporosity Containing Trifluoromethyl and Phenylsulfone Groups as Materials for Membrane Gas Separation , 2008 .

[8]  Jean M. J. Fréchet,et al.  Preparation of Size-Selective Nanoporous Polymer Networks of Aromatic Rings: Potential Adsorbents for Hydrogen Storage , 2008 .

[9]  S. Makhseed,et al.  Hydrogen adsorption in microporous organic framework polymer. , 2008, Chemical communications.

[10]  A. Cooper,et al.  Synthetic control of the pore dimension and surface area in conjugated microporous polymer and copolymer networks. , 2008, Journal of the American Chemical Society.

[11]  S. Kaskel,et al.  Element-organic frameworks with high permanent porosity. , 2008, Chemical communications.

[12]  Arne Thomas,et al.  Toward stable interfaces in conjugated polymers: microporous poly(p-phenylene) and poly(phenyleneethynylene) based on a spirobifluorene building block. , 2008, Journal of the American Chemical Society.

[13]  M. Antonietti,et al.  Microporous networks of high-performance polymers: Elastic deformations and gas sorption properties , 2008 .

[14]  Neil L. Campbell,et al.  Conjugated microporous poly(aryleneethynylene) networks. , 2007, Angewandte Chemie.

[15]  M. Antonietti,et al.  Exploring Polymers of Intrinsic Microporosity – Microporous, Soluble Polyamide and Polyimide , 2007 .

[16]  Neil L. Campbell,et al.  Hydrogen Storage in Microporous Hypercrosslinked Organic Polymer Networks , 2007 .

[17]  K. Harris,et al.  A triptycene-based polymer of intrinsic microposity that displays enhanced surface area and hydrogen adsorption. , 2007, Chemical communications.

[18]  Jean M. J. Fréchet,et al.  High surface area nanoporous polymers for reversible hydrogen storage , 2006 .

[19]  A. Cooper,et al.  Hydrogen adsorption in microporous hypercrosslinked polymers. , 2006, Chemical communications.

[20]  Henrietta W. Langmi,et al.  Towards polymer-based hydrogen storage materials: engineering ultramicroporous cavities within polymers of intrinsic microporosity. , 2006, Angewandte Chemie.

[21]  Neil B. McKeown,et al.  Solution‐Processed, Organophilic Membrane Derived from a Polymer of Intrinsic Microporosity , 2004 .

[22]  Dongmei Cui,et al.  Supplementary Material (ESI) for Chemical Communications , 2009 .