Taking the MAX from neuronal responses

[1]  Sean P. MacEvoy,et al.  Lightness constancy in primary visual cortex , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[2]  R. Desimone,et al.  Competitive Mechanisms Subserve Attention in Macaque Areas V2 and V4 , 1999, The Journal of Neuroscience.

[3]  C. Moorehead All rights reserved , 1997 .

[4]  J Duncan,et al.  Responses of neurons in macaque area V4 during memory-guided visual search. , 2001, Cerebral cortex.

[5]  L. Arend,et al.  Simultaneous constancy, lightness, and brightness. , 1987, Journal of the Optical Society of America. A, Optics and image science.

[6]  Simon J. Thorpe,et al.  Spike arrival times: A highly efficient coding scheme for neural networks , 1990 .

[7]  R. Desimone,et al.  Responses of Neurons in Inferior Temporal Cortex during Memory- Guided Visual Search , 1998 .

[8]  V. Ekroll,et al.  The natural center of chromaticity space is not always achromatic: A new look at color induction , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[9]  M D'Zmura,et al.  Color Appearance of Surfaces Viewed through Fog , 2000, Perception.

[10]  David Katz,et al.  Die Erscheinungsweisen der Farben und ihre Beeinflussung durch die individuelle Erfahrung , 1911 .

[11]  R. Desimone,et al.  Neural mechanisms of selective visual attention. , 1995, Annual review of neuroscience.

[12]  S. Shevell The dual role of chromatic backgrounds in color perception , 1978, Vision Research.

[13]  E. Rolls,et al.  INVARIANT FACE AND OBJECT RECOGNITION IN THE VISUAL SYSTEM , 1997, Progress in Neurobiology.

[14]  David L. Sheinberg,et al.  Noticing Familiar Objects in Real World Scenes: The Role of Temporal Cortical Neurons in Natural Vision , 2001, The Journal of Neuroscience.

[15]  Edward H. Adelson,et al.  On seeing stuff: the perception of materials by humans and machines , 2001, IS&T/SPIE Electronic Imaging.

[16]  M. Tovée,et al.  Information encoding and the responses of single neurons in the primate temporal visual cortex. , 1993, Journal of neurophysiology.

[17]  Keiji Tanaka,et al.  Inferotemporal cortex and object vision. , 1996, Annual review of neuroscience.

[18]  Rufin van Rullen,et al.  Rate Coding Versus Temporal Order Coding: What the Retinal Ganglion Cells Tell the Visual Cortex , 2001, Neural Computation.

[19]  T. Poggio,et al.  Hierarchical models of object recognition in cortex , 1999, Nature Neuroscience.

[20]  S. Zeki The representation of colours in the cerebral cortex , 1980, Nature.

[21]  Rainer Mausfeld Color Perception: From Grassmann Codes to a Dual Code for Object and Illumination Colors , 1998 .

[22]  B. Wandell,et al.  Photoreceptor sensitivity changes explain color appearance shifts induced by large uniform backgrounds in dichoptic matching , 1995, Vision Research.

[23]  T. Gawne,et al.  Responses of primate visual cortical neurons to stimuli presented by flash, saccade, blink, and external darkening. , 2002, Journal of neurophysiology.

[24]  G. Orban,et al.  Shape interactions in macaque inferior temporal neurons. , 1999, Journal of neurophysiology.

[25]  E. Rolls,et al.  The Neurophysiology of Backward Visual Masking: Information Analysis , 1999, Journal of Cognitive Neuroscience.

[26]  T. Sejnowski,et al.  Nonlocal interactions in color perception: nonlinear processing of chromatic signals from remote inducers , 2001, Vision Research.

[27]  V. Ekroll,et al.  Psychophysical model of chromatic perceptual transparency based on substractive color mixture. , 2002, Journal of the Optical Society of America. A, Optics, image science, and vision.

[28]  J. Walraven Discounting the background—the missing link in the explanation of chromatic induction , 1976, Vision Research.

[29]  C. Enroth-Cugell,et al.  Chapter 9 Visual adaptation and retinal gain controls , 1984 .

[30]  D. Macleod,et al.  Color appearance depends on the variance of surround colors , 1997, Current Biology.

[31]  M D'Zmura,et al.  The Colors Seen behind Transparent Filters , 2000, Perception.

[32]  Guillaume A. Rousselet,et al.  Parallel processing in high-level categorization of natural images , 2002, Nature Neuroscience.

[33]  David L. Sheinberg,et al.  Visual object recognition. , 1996, Annual review of neuroscience.

[34]  T. Gawne,et al.  Responses of primate visual cortical V4 neurons to simultaneously presented stimuli. , 2002, Journal of neurophysiology.

[35]  G. Orban,et al.  Responses of macaque inferior temporal neurons to overlapping shapes. , 1997, Cerebral cortex.

[36]  Arnaud Delorme,et al.  Spike-based strategies for rapid processing , 2001, Neural Networks.

[37]  Scott P. Johnson The nature of cognitive development , 2003, Trends in Cognitive Sciences.

[38]  J. Pokorny,et al.  Luminance and chromatic modulation sensitivity of macaque ganglion cells and human observers. , 1990, Journal of the Optical Society of America. A, Optics and image science.