Electrical addressing of confined quantum systems for quasiclassical computation and finite state logic machines.

Conduction spectroscopy measures the current I through a nanosystem as a function of the voltage V between two electrodes. The differential conductance, dI/dV, has peaks that can be assigned to resonance conditions with different electronic levels of the system. Between these increments, the current has roughly constant plateaus. We discuss how measurements of the current vs. voltage can be used to perform Boolean operations and hence construct finite state logic machines and combinational circuits. The inputs to the device are the source-drain voltage, including its sign, and a gate voltage applied in a manner analogous to optical Stark spectroscopy. As simple examples, we describe a two-state set-reset machine (a machine whose output depends on the input and also on its present state) and a full adder circuit (a circuit that requires three inputs and provides two outputs).

[1]  Ian A. Walmsley,et al.  Quantum Physics Under Control , 2003 .

[2]  Paul L. McEuen,et al.  Nanomechanical oscillations in a single-C60 transistor , 2000, Nature.

[3]  D. Deutsch Quantum theory, the Church–Turing principle and the universal quantum computer , 1985, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[4]  Hongkun Park,et al.  Shell filling and exchange coupling in metallic single-walled carbon nanotubes. , 2002, Physical review letters.

[5]  R. Levine,et al.  Electrical transmission of molecular bridges , 2004 .

[6]  D. Deutsch Quantum computational networks , 1989, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[7]  A Paul Alivisatos,et al.  A single-electron transistor made from a cadmium selenide nanocrystal , 1997, Nature.

[8]  J. Gilman,et al.  Nanotechnology , 2001 .

[9]  J. F. Stoddart,et al.  A [2]Catenane-Based Solid State Electronically Reconfigurable Switch , 2000 .

[10]  Françoise Remacle,et al.  On spectroscopy, control, and molecular information processing. , 2002, Chemphyschem : a European journal of chemical physics and physical chemistry.

[11]  J. David Irwin,et al.  An Introduction to Computer Logic , 1974 .

[12]  U. Banin,et al.  Identification of atomic-like electronic states in indium arsenide nanocrystal quantum dots , 1999, Nature.

[13]  Mark A. Ratner,et al.  First-principles based matrix Green's function approach to molecular electronic devices: general formalism , 2002 .

[14]  K. B. Whaley,et al.  Universal quantum computation with the exchange interaction , 2000, Nature.

[15]  Yi Luo,et al.  The molecule-electrode interface in single-molecule transistors. , 2003, Angewandte Chemie.

[16]  Molecular binding at gold transport interfaces. III. Field dependence of electronic properties. , 2004, The Journal of chemical physics.

[17]  S. Tarucha,et al.  Few-electron quantum dots , 2001 .

[18]  R. Cleve,et al.  Quantum algorithms revisited , 1997, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[19]  A. Zunger,et al.  Shell-Tunneling Spectroscopy of the Single-Particle Energy Levels of Insulating Quantum Dots , 2001 .

[20]  Jonas I. Goldsmith,et al.  Coulomb blockade and the Kondo effect in single-atom transistors , 2002, Nature.

[21]  U. Banin,et al.  Tunneling and optical spectroscopy of semiconductor nanocrystals. , 2003, Annual review of physical chemistry.

[22]  B. E. Kane A silicon-based nuclear spin quantum computer , 1998, Nature.

[23]  Oded Millo,et al.  Tunneling spectroscopy of isolated C 60 molecules in the presence of charging effects , 1997 .

[24]  Michael Tinkham,et al.  Introduction to mesoscopic physics , 1997 .

[25]  Pablo Jarillo-Herrero,et al.  Electron-hole symmetry in a semiconducting carbon nanotube quantum dot , 2004, Nature.

[26]  R. Levine,et al.  Molecular logic by optical spectroscopy with output transfer by charge migration along a peptide , 2002 .

[27]  M. Ratner,et al.  Electron conduction in molecular wires. I. A scattering formalism , 1994 .

[28]  M. Ratner,et al.  Electron Transport in Molecular Wire Junctions , 2003, Science.

[29]  D. DiVincenzo Quantum gates and circuits , 1997, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[30]  R. Levine,et al.  Level crossing conductance spectroscopy of molecular bridges , 2004 .

[31]  Supriyo Datta,et al.  Gating of a Molecular Transistor: Electrostatic and Conformational , 2002 .

[32]  Hongkun Park,et al.  Kondo resonance in a single-molecule transistor , 2002, Nature.

[33]  D. Awschalom,et al.  Semiconductor spintronics and quantum computation , 2002 .

[34]  Stoddart,et al.  Electronically configurable molecular-based logic gates , 1999, Science.

[35]  Mark A. Ratner,et al.  Molecule-interface coupling effects on electronic transport in molecular wires , 1998 .

[36]  D. DiVincenzo,et al.  Quantum computation with quantum dots , 1997, cond-mat/9701055.

[37]  Françoise Remacle,et al.  Towards a molecular logic machine , 2001 .

[38]  M. Gell-Mann,et al.  Physics Today. , 1966, Applied optics.

[39]  Mark A. Ratner,et al.  Molecular wires: guiding the super-exchange interactions between two electrodes , 2004 .

[40]  Xiang Zhang,et al.  The metastability of an electrochemically controlled nanoscale machine on gold surfaces. , 2004, Chemphyschem : a European journal of chemical physics and physical chemistry.

[41]  Françoise Remacle,et al.  Intermolecular and intramolecular logic gates , 2001 .

[42]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[43]  R. Levine,et al.  Gating the Conductivity of Arrays of Metallic Quantum Dots , 2003 .

[44]  W Ertmer,et al.  Quantum computing with spatially delocalized qubits. , 2003, Physical review letters.

[45]  T. Ralph,et al.  Demonstration of an all-optical quantum controlled-NOT gate , 2003, Nature.

[46]  R. Levine,et al.  Current–voltage–temperature characteristics for 2D arrays of metallic quantum dots , 2002 .

[47]  I. Rubinstein,et al.  Energy level tunneling spectroscopy and single electron charging in individual CdSe quantum dots , 1999 .

[48]  Tohru Yamamoto,et al.  Two-dimensional molecular electronics circuits. , 2002, Chemphyschem : a European journal of chemical physics and physical chemistry.

[49]  U Banin,et al.  Imaging and spectroscopy of artificial-atom states in core/shell nanocrystal quantum dots. , 2001, Physical review letters.