SYNAPS: A Library for Dedicated Applications in Symbolic Numeric Computing

We present an overview of the open source library SYNAPS. We describe some of the representative algorithms of the library and illustrate them on some explicit computations, such as solving polynomials and computing geometric information on implicit curves and surfaces. Moreover, we describe the design and the techniques we have developed in order to handle a hierarchy of generic and specialized data-structures and routines, based on a view mechanism. This allows us to construct dedicated plugins, which can be loaded easily in an external tool. Finally, we show how the design of the library allows us to embed the algebraic operations, as a dedicated plugin, into the external geometric modeler AXEL.

[1]  Gerald Farin,et al.  Curves and surfaces for computer aided geometric design , 1990 .

[2]  Nicholas M. Patrikalakis,et al.  Computation of the solutions of nonlinear polynomial systems , 1993, Comput. Aided Geom. Des..

[3]  David A. Cox,et al.  Ideals, Varieties, and Algorithms , 1997 .

[4]  Philippe Trébuchet Vers une résolution stable et rapide des équations algébriques , 2002 .

[5]  Michael S. Floater,et al.  On zero curves of bivariate polynomials , 1996, Adv. Comput. Math..

[6]  B. Mourrain,et al.  Subdivision Methods for the Topology of 2d and 3d Implicit Curves , 2008 .

[7]  B. Mourrain,et al.  Meshing implicit algebraic surfaces : the smooth case , 2004 .

[8]  R. Gregory Taylor,et al.  Modern computer algebra , 2002, SIGA.

[9]  Hans J. Stetter,et al.  Numerical polynomial algebra , 2004 .

[10]  S. Rump Computational error bounds for multiple or nearly multiple eigenvalues , 2001 .

[11]  Chee-Keng Yap,et al.  A core library for robust numeric and geometric computation , 1999, SCG '99.

[12]  Dario Bini,et al.  Numerical computation of polynomial zeros by means of Aberth's method , 1996, Numerical Algorithms.

[13]  Ralph E. Johnson,et al.  Design Patterns: Abstraction and Reuse of Object-Oriented Design , 1993, ECOOP.

[14]  I. Emiris,et al.  Real Algebraic Numbers: Complexity Analysis and Experimentations , 2008 .

[15]  Bernard Mourrain,et al.  Subdivision methods for solving polynomial equations , 2009, J. Symb. Comput..

[16]  Bernard Mourrain,et al.  A New Criterion for Normal Form Algorithms , 1999, AAECC.

[17]  Jan Verschelde,et al.  Algorithm 795: PHCpack: a general-purpose solver for polynomial systems by homotopy continuation , 1999, TOMS.

[18]  Alicia Dickenstein,et al.  Extremal Real Algebraic Geometry and A-Discriminants , 2006 .

[19]  Bernard Mourrain,et al.  Solving projective complete intersection faster , 2000, ISSAC.

[20]  Chee-Keng Yap,et al.  Fundamental problems of algorithmic algebra , 1999 .

[21]  Mohab Safey El Din,et al.  New Structure Theorem for Subresultants , 2000, J. Symb. Comput..

[22]  Ioannis Z. Emiris,et al.  Univariate Polynomial Real Root Isolation: Continued Fractions Revisited , 2006, ESA.

[23]  Thomas Lickteig,et al.  Sylvester-Habicht Sequences and Fast Cauchy Index Computation , 2001, J. Symb. Comput..

[24]  Bernard Mourrain,et al.  Generalized normal forms and polynomial system solving , 2005, ISSAC.

[25]  Bernard Mourrain,et al.  Resultant-Based Methods for Plane Curves Intersection Problems , 2005, CASC.

[26]  E. W. Ng Symbolic and Algebraic Computation , 1979, Lecture Notes in Computer Science.

[27]  Akiko Takeda,et al.  PHoM – a Polyhedral Homotopy Continuation Method for Polynomial Systems , 2004, Computing.

[28]  Chee-Keng Yap,et al.  Almost tight recursion tree bounds for the Descartes method , 2006, ISSAC '06.

[29]  S. Basu,et al.  Algorithms in real algebraic geometry , 2003 .

[30]  Shin'ichi Oishi,et al.  Fast Inclusion of Interval Matrix Multiplication , 2005, Reliab. Comput..

[31]  H. Stetter,et al.  An Elimination Algorithm for the Computation of All Zeros of a System of Multivariate Polynomial Equations , 1988 .

[32]  Bernard Mourrain,et al.  Pythagore’s Dilemma, Symbolic-Numeric Computation, and the Border Basis Method , 2007 .

[33]  Victor J. Milenkovic,et al.  An Approximate Arrangement Algorithm for Semi-Algebraic Curves , 2007, Int. J. Comput. Geom. Appl..

[34]  P. Zimmermann,et al.  Efficient isolation of polynomial's real roots , 2004 .