A construction of linear codes and their complete weight enumerators

Abstract Recently, linear codes constructed from defining sets have been studied extensively. They may have excellent parameters if the defining set is chosen properly. Let m > 2 be a positive integer. For an odd prime p, let r = p m and Tr be the absolute trace function from F r onto F p . In this paper, we give a construction of linear codes by defining the code C D = { ( Tr ( a x ) ) x ∈ D : a ∈ F r } , where D = { x ∈ F r : Tr ( x ) = 1 , Tr ( x 2 ) = 0 } . Its complete weight enumerator and weight enumerator are determined explicitly by employing cyclotomic numbers and Gauss sums. However, we find that the code is optimal with respect to the Griesmer bound provided that m = 3 . In fact, it is MDS when m = 3 . Moreover, the codes presented have higher rate compared with other codes, which enables them to have essential applications in areas such as association schemes and secret sharing schemes.

[1]  Cunsheng Ding,et al.  Linear Codes From Some 2-Designs , 2015, IEEE Transactions on Information Theory.

[2]  H. Niederreiter,et al.  Finite Fields: Encyclopedia of Mathematics and Its Applications. , 1997 .

[3]  Shudi Yang,et al.  Complete weight enumerators of a family of three-weight linear codes , 2015, Des. Codes Cryptogr..

[4]  Shudi Yang,et al.  Complete Weight Enumerators of a Class of Linear Codes From Weil Sums , 2019, IEEE Access.

[5]  Qin Yue,et al.  Two classes of two-weight linear codes , 2016, Finite Fields Their Appl..

[6]  Tor Helleseth,et al.  Monomial and quadratic bent functions over the finite fields of odd characteristic , 2006, IEEE Transactions on Information Theory.

[7]  Dongdai Lin,et al.  A class of three-weight and five-weight linear codes , 2015, Discret. Appl. Math..

[8]  Dongdai Lin,et al.  A Class of Linear Codes With Three Weights , 2015, ArXiv.

[9]  T. Storer Cyclotomy and difference sets , 1967 .

[10]  Charles J. Colbourn,et al.  On constant composition codes , 2006, Discret. Appl. Math..

[11]  Cunsheng Ding,et al.  A Construction of Optimal Constant Composition Codes , 2006, Des. Codes Cryptogr..

[12]  Chengju Li,et al.  Complete weight enumerators of a class of linear codes , 2017, Des. Codes Cryptogr..

[13]  N. J. A. Sloane,et al.  Complete weight enumerators of generalized doubly-even self-dual codes , 2003, Finite Fields Their Appl..

[14]  Cunsheng Ding,et al.  A Class of Two-Weight and Three-Weight Codes and Their Applications in Secret Sharing , 2015, IEEE Transactions on Information Theory.

[15]  A. Calderbank,et al.  THREE-WEIGHT CODES AND ASSOCIATION SCHEMES , 2014 .

[16]  Cunsheng Ding,et al.  Binary Linear Codes With Three Weights , 2014, IEEE Communications Letters.

[17]  Jian Gao,et al.  Complete weight enumerators of two classes of linear codes , 2015, Cryptography and Communications.

[18]  O. Antoine,et al.  Theory of Error-correcting Codes , 2022 .

[19]  W. Cary Huffman,et al.  Fundamentals of Error-Correcting Codes , 1975 .

[20]  Cunsheng Ding,et al.  A Generic Construction of Cartesian Authentication Codes , 2007, IEEE Transactions on Information Theory.

[21]  Ian F. Blake,et al.  On the Complete Weight Enumerator of Reed-Solomon Codes , 1991, SIAM J. Discret. Math..

[22]  James H. Griesmer,et al.  A Bound for Error-Correcting Codes , 1960, IBM J. Res. Dev..

[23]  Shudi Yang,et al.  A class of three-weight linear codes and their complete weight enumerators , 2016, Cryptography and Communications.

[24]  Cunsheng Ding,et al.  A coding theory construction of new systematic authentication codes , 2005, Theor. Comput. Sci..

[25]  Rudolf Lide,et al.  Finite fields , 1983 .

[26]  Aleksandr A. Nechaev,et al.  Complete weight enumerators of generalized Kerdock code and related linear codes over Galois ring , 2001, Discret. Appl. Math..

[27]  Shudi Yang,et al.  Complete Weight Enumerators of Some Linear Codes , 2015, ArXiv.

[28]  J. Koenderink Q… , 2014, Les noms officiels des communes de Wallonie, de Bruxelles-Capitale et de la communaute germanophone.

[29]  Shudi Yang,et al.  Complete weight enumerators of some linear codes and their applications , 2016, Des. Codes Cryptogr..

[30]  Cunsheng Ding,et al.  Optimal Constant Composition Codes From Zero-Difference Balanced Functions , 2008, IEEE Transactions on Information Theory.

[31]  Chengju Li,et al.  Complete weight enumerators of some cyclic codes , 2016, Des. Codes Cryptogr..