Constraints on the Mass Accretion Rate onto the Supermassive Black Hole of Cygnus A Using the Submillimeter Array

We present the first detailed polarimetric studies of Cygnus A at 230 GHz with the Submillimeter Array (SMA) to constrain the mass accretion rate onto its supermassive black hole. We detected the polarized emission associated with the core at a fractional polarization of . This low fractional polarization suggests that the polarized emission is highly depolarized. One of the possible explanations is due to a significant variance in the Faraday rotation measure within the synthesized beam. By assuming the Faraday depolarization caused by inhomogeneous column density of the magnetized plasma associated with the surrounding radiatively-inefficient accretion flow within the SMA beam, we derived the constraint on the mass accretion rate to be larger than 0.15 yr−1 at the Bondi radius. The derived constraint indicates that an adiabatic inflow–outflow solution or an advection-dominated accretion flow should be preferable as the accretion flow model in order to explain the jet power of Cygnus A.

[1]  M. Kino,et al.  Faraday Rotation in the Jet of M87 inside the Bondi Radius: Indication of Winds from Hot Accretion Flows Confining the Relativistic Jet , 2018, The Astrophysical Journal.

[2]  J. Algaba,et al.  Parabolic Jets from the Spinning Black Hole in M87 , 2018, The Astrophysical Journal.

[3]  H. Falcke,et al.  ALMA Polarimetry of Sgr A*: Probing the Accretion Flow from the Event Horizon to the Bondi Radius , 2018, The Astrophysical Journal.

[4]  R. Chary,et al.  The Highly Polarized Dusty Emission Core of Cygnus A , 2018, The Astrophysical Journal.

[5]  C. Carilli,et al.  The Cocoon Shocks of Cygnus A: Pressures and Their Implications for the Jets and Lobes , 2018, 1802.10106.

[6]  Fast-spinning Black Holes Inferred from Symmetrically Limb-brightened Radio Jets , 2018, The Astrophysical Journal.

[7]  J. Ostriker,et al.  Active Galactic Nucleus Feedback in an Elliptical Galaxy with the Most Updated AGN Physics. II. High Angular Momentum Case , 2017, The Astrophysical Journal.

[8]  L. Ho,et al.  Active Galactic Nucleus Feedback in an Elliptical Galaxy with the Most Updated AGN Physics. I. Low Angular Momentum Case , 2018 .

[9]  S. Longmore,et al.  A 1.3 mm SMA Survey of 29 Variable Young Stellar Objects , 2017, 1710.08686.

[10]  R. Plambeck,et al.  What Is the Hidden Depolarization Mechanism in Low-luminosity AGNs? , 2017, 1707.00066.

[11]  R. Lico,et al.  Interpreting the time variable RM observed in the core region of the TeV blazar Mrk 421 , 2017, 1704.06133.

[12]  G. Pisano,et al.  Polarimetry at millimeter wavelengths with the NIKA camera: Calibration and performance , 2016, 1609.02042.

[13]  J. A. Zensus,et al.  First 3 mm-VLBI imaging of the two-sided jet in Cygnus A - Zooming into the launching region , 2016, 1603.04221.

[14]  Christina Freytag,et al.  Radiative Processes In Astrophysics , 2016 .

[15]  K. Menten,et al.  THE ENVIRONMENT OF THE STRONGEST GALACTIC METHANOL MASER , 2015, 1503.06841.

[16]  R. Narayan,et al.  NUMERICAL SIMULATION OF HOT ACCRETION FLOWS. III. REVISITING WIND PROPERTIES USING THE TRAJECTORY APPROACH , 2015, 1501.01197.

[17]  M. Johnson,et al.  PROBING THE PARSEC-SCALE ACCRETION FLOW OF 3C 84 WITH MILLIMETER WAVELENGTH POLARIMETRY , 2014, 1410.5887.

[18]  E. Perlman,et al.  POLARIZED MID-INFRARED SYNCHROTRON EMISSION IN THE CORE OF CYGNUS A , 2014, 1407.6365.

[19]  A. Tchekhovskoy,et al.  On the efficiency of jet production in radio galaxies , 2014, 1406.7420.

[20]  A. Tchekhovskoy,et al.  Dynamically important magnetic fields near accreting supermassive black holes , 2014, Nature.

[21]  P. Koch,et al.  MEASURING MASS ACCRETION RATE ONTO THE SUPERMASSIVE BLACK HOLE IN M87 USING FARADAY ROTATION MEASURE WITH THE SUBMILLIMETER ARRAY , 2014, 1402.5238.

[22]  R. Narayan,et al.  Hot Accretion Flows Around Black Holes , 2014, 1401.0586.

[23]  R. Narayan,et al.  Energy, momentum and mass outflows and feedback from thick accretion discs around rotating black holes , 2013, 1307.1143.

[24]  Harvard,et al.  Efficient Generation of Jets from Magnetically Arrested Accretion on a Rapidly Spinning Black Hole , 2011, 1108.0412.

[25]  Cambridge,et al.  Bondi flow from a slowly rotating hot atmosphere , 2011, 1105.0594.

[26]  Stephen R. Green,et al.  Numerical parameter survey of non‐radiative black hole accretion: flow structure and variability of the rotation measure , 2010, 1011.5498.

[27]  P. Nulsen,et al.  ARE RADIO ACTIVE GALACTIC NUCLEI POWERED BY ACCRETION OR BLACK HOLE SPIN? , 2010, 1007.1227.

[28]  A. Fabian,et al.  The power output of local obscured and unobscured AGN: crossing the absorption barrier with Swift/ BAT and IRAS , 2009, 0910.5256.

[29]  Paul S. Smith,et al.  Multiwaveband Polarimetric Observations of 15 Active Galactic Nuclei at High Frequencies: Correlated Polarization Behavior , 2007, 0705.4273.

[30]  J. M. Moran,et al.  Interferometric Measurements of Variable 340 GHz Linear Polarization in Sagittarius A* , 2005, astro-ph/0511653.

[31]  M. Wright,et al.  The Hot Spots of Cygnus A at 230 GHz , 2004 .

[32]  J. Krolik,et al.  Magnetically Driven Accretion Flows in the Kerr Metric. II. Structure of the Magnetic Field , 2003, astro-ph/0311500.

[33]  A. Marconi,et al.  Spectroscopy of the near-nuclear regions of Cygnus A: estimating the mass of the supermassive black hole , 2003, astro-ph/0302513.

[34]  Geoffrey C. Bower,et al.  Interferometric Detection of Linear Polarization from Sagittarius A* at 230 GHz , 2003, astro-ph/0302227.

[35]  R. Narayan,et al.  Three-dimensional Magnetohydrodynamic Simulations of Spherical Accretion , 2001, astro-ph/0105365.

[36]  T. Padmanabhan Theoretical Astrophysics: Radiative Processes , 2000 .

[37]  Roger D. Blandford,et al.  On the fate of gas accreting at a low rate on to a black hole , 1998, astro-ph/9809083.

[38]  James M. Moran,et al.  The Submillimeter Array , 2004, Astronomical Telescopes and Instrumentation.

[39]  The Cluster of Galaxies Surrounding Cygnus A , 1997, astro-ph/9708150.

[40]  R. Narayan,et al.  Advection-Dominated Accretion and the Spectral States of Black Hole X-Ray Binaries: Application to Nova Muscae 1991 , 1997, astro-ph/9705237.

[41]  F. Honma Global Structure of Bimodal Accretion Disks around a Black Hole , 1996 .

[42]  C. Carilli,et al.  Cygnus A , 1996 .

[43]  R. Narayan,et al.  Advection dominated accretion: Underfed black holes and neutron stars , 1994, astro-ph/9411059.

[44]  M. Wright,et al.  Mapping Cygnus A at 3 millimeter wavelength with the MIRIAD system , 1993 .

[45]  Fulvio Melia,et al.  An accreting black hole model for sagittarius A , 1992 .

[46]  C. Carilli,et al.  Faraday rotation of Cygnus A - magnetic fields in cluster gas , 1987 .

[47]  G. Swenson,et al.  Interferometry and Synthesis in Radio Astronomy , 1986 .

[48]  Richard A. Perley,et al.  The Jet and Filaments in Cygnus A , 1984 .

[49]  K. Thorne Disk-Accretion onto a Black Hole. II. Evolution of the Hole , 1974 .