Deformation techniques to solve generalised Pham systems

In Heintz et al. (Electron. J. SADIO 1(1) (1998) 37), Castro et al. (Found., Comput. Math. (2003) to appear) and Pardo (Proceedings EACA'2000, 2000, pp. 25-51), the authors have shown that universal solving procedures require exponential running time. Roughly speaking, a universal solving procedure takes as input a system of multivariate polynomial equations and outputs complete symbolic information on the solution variety. Here, we introduce a nonuniversal solving procedure adapted to Generalised Pham Systems. The aim is to compute partial information of the variety defined by the input system. The Algorithm is based on an homotopic deformation and on a non-Archimedean lifting procedure from a non-singular zero of the homotopy curve. The complexity of the procedure is also stated and it depends on some intrinsic quantity called the deformation degree of the given input system.

[1]  Marc Giusti,et al.  On the efficiency of effective Nullstellensätze , 2005, computational complexity.

[2]  S. Smale,et al.  Complexity of Bezout’s Theorem II Volumes and Probabilities , 1993 .

[3]  K. Mulmuley A fast parallel algorithm to compute the rank of a matrix over an arbitrary field , 1987, Comb..

[4]  一松 信,et al.  R.C. Gunning and H.Rossi: Analytic Functions of Several Complex Variables, Prentice-Hall, Englewood Cliffs, N.J., 1965, 317頁, 15×23cm, $12.50. , 1965 .

[5]  S. Smale,et al.  Complexity of Bezout's theorem IV: probability of success; extensions , 1996 .

[6]  I. Shafarevich,et al.  Basic algebraic geometry 1 (2nd, revised and expanded ed.) , 1994 .

[7]  Stephen Smale,et al.  Complexity of Bezout's Theorem V: Polynomial Time , 1994, Theor. Comput. Sci..

[8]  S. Comput,et al.  POLYNOMIAL-TIME REDUCTIONS FROM MULTIVARIATE TO BI- AND UNIVARIATE INTEGRAL POLYNOMIAL FACTORIZATION* , 1985 .

[9]  Jacob T. Schwartz,et al.  Fast Probabilistic Algorithms for Verification of Polynomial Identities , 1980, J. ACM.

[10]  Luis M. Pardo,et al.  Kronecker's and Newton's Approaches to Solving: A First Comparison , 2001, J. Complex..

[11]  Victor Y. Pan,et al.  Multivariate Polynomials, Duality, and Structured Matrices , 2000, J. Complex..

[12]  Richard Zippel,et al.  Effective polynomial computation , 1993, The Kluwer international series in engineering and computer science.

[13]  Jan Verschelde,et al.  Toric Newton Method for Polynomial Homotopies , 2000, J. Symb. Comput..

[14]  Joos Heintz,et al.  Testing polynomials which are easy to compute (Extended Abstract) , 1980, STOC '80.

[15]  Luis M. Pardo,et al.  How Lower and Upper Complexity Bounds Meet in Elimination Theory , 1995, AAECC.

[16]  S. D. Cohen The Distribution of Galois Groups and Hilbert's Irreducibility Theorem , 1981 .

[17]  Erich Kaltofen,et al.  Factorization of Polynomials Given by Straight-Line Programs , 1989, Adv. Comput. Res..

[18]  Andrew J. Sommese,et al.  Numerical Decomposition of the Solution Sets of Polynomial Systems into Irreducible Components , 2000, SIAM J. Numer. Anal..

[19]  Teresa Krick,et al.  A computational method for diophantine approximation , 1996 .

[20]  S. Smale,et al.  Complexity of Bézout’s theorem. I. Geometric aspects , 1993 .

[21]  Ketan Mulmuley,et al.  A fast parallel algorithm to compute the rank of a matrix over an arbitrary field , 1986, STOC '86.

[22]  J. E. Morais,et al.  When Polynomial Equation Systems Can Be "Solved" Fast? , 1995, AAECC.

[23]  L. Kronecker Grundzüge einer arithmetischen Theorie der algebraischen Grössen. (Abdruck einer Festschrift zu Herrn E. E. Kummers Doctor-Jubiläum, 10. September 1881.). , 2022 .

[24]  Grégoire Lecerf Une alternative aux methodes de reecriture pour la resolution des systemes algebriques , 2001 .

[25]  S. L. Kleiman INTERSECTION THEORY (Ergebnisse der Mathematik und ihrer Grenzgebiete 3. Folge. Band 2) , 1985 .

[26]  B. Mourrain,et al.  Solving special polynomial systems by using structured matrices and algebraic residues , 1997 .

[27]  J. E. Morais,et al.  Straight--Line Programs in Geometric Elimination Theory , 1996, alg-geom/9609005.

[28]  I. Shafarevich Basic algebraic geometry , 1974 .

[29]  Marc Giusti,et al.  The Hardness of Polynomial Equation Solving , 2003, Found. Comput. Math..

[30]  S. Smale The fundamental theorem of algebra and complexity theory , 1981 .

[31]  Joos Heintz,et al.  On the Time–Space Complexity of Geometric Elimination Procedures , 2001, Applicable Algebra in Engineering, Communication and Computing.

[32]  Heinz Kredel,et al.  Gröbner Bases: A Computational Approach to Commutative Algebra , 1993 .

[33]  임종인,et al.  Gröbner Bases와 응용 , 1995 .

[34]  Joos Heintz,et al.  Corrigendum: Definability and Fast Quantifier Elimination in Algebraically Closed Fields , 1983, Theor. Comput. Sci..

[35]  Juan Sabia,et al.  Bounds for traces in complete intersections and degrees in the Nullstellensatz , 1995, Applicable Algebra in Engineering, Communication and Computing.

[36]  Stuart J. Berkowitz,et al.  On Computing the Determinant in Small Parallel Time Using a Small Number of Processors , 1984, Inf. Process. Lett..

[37]  J BerkowitzStuart On computing the determinant in small parallel time using a small number of processors , 1984 .

[38]  Alicia Dickenstein,et al.  Computing multidimensional residues , 1994, alg-geom/9404011.

[39]  W. Rheinboldt,et al.  Pathways to Solutions, Fixed Points, and Equilibria. , 1983 .

[40]  Teresa Krick,et al.  Sharp estimates for the arithmetic Nullstellensatz , 1999, math/9911094.

[41]  L. Csanky,et al.  Fast parallel matrix inversion algorithms , 1975, 16th Annual Symposium on Foundations of Computer Science (sfcs 1975).

[42]  Éric Schost,et al.  Solving some overdetermined polynomial systems , 1999, ISSAC '99.

[43]  Andrew J. Sommese Numerical Irreducible Decomposition using Projections from Points on the Components , 2001 .

[44]  Joos Heintz,et al.  Deformation Techniques for Efficient Polynomial Equation Solving , 2000, J. Complex..

[45]  Marc Giusti,et al.  Lower bounds for diophantine approximations , 1997 .

[46]  Jan van Leeuwen,et al.  Handbook of Theoretical Computer Science, Vol. A: Algorithms and Complexity , 1994 .

[47]  J. Maurice Rojas Some Speed-Ups and Speed Limits for Real Algebraic Geometry , 2000, J. Complex..

[48]  G. B. M. Zerr,et al.  Algebra: 117-118 , 1900 .

[49]  V. Pan,et al.  Structured matrices and newton's iteration: unified approach , 2000 .

[50]  L. Kronecker Grundzüge einer arithmetischen Theorie der algebraische Grössen. , 2022 .

[51]  J. E. Morais,et al.  On the intrinsic complexity of the arithmetic Nullstellensatz , 2000 .

[52]  Stephen Smale,et al.  Complexity of Bezout's Theorem: III. Condition Number and Packing , 1993, J. Complex..

[53]  B. Sturmfels SOLVING SYSTEMS OF POLYNOMIAL EQUATIONS , 2002 .

[54]  Marc Giusti,et al.  Le rôle des structures de données dans les problèmes d'élimination , 1997 .

[55]  Volker Strassen,et al.  Algebraic Complexity Theory , 1991, Handbook of Theoretical Computer Science, Volume A: Algorithms and Complexity.

[56]  Anatolii A. Logunov,et al.  Analytic functions of several complex variables , 1965 .

[57]  J. Verschelde,et al.  Homotopies exploiting Newton polytopes for solving sparse polynomial systems , 1994 .

[58]  Marc Giusti,et al.  A Gröbner Free Alternative for Polynomial System Solving , 2001, J. Complex..

[59]  José Enrique Morais San Miguel Resolución eficaz de sistemas de ecuaciones polinomiales , 1998 .

[60]  David Castro Esteban Sobre la complejidad de la representación de variedades algebraicas , 2001 .

[61]  Robin Hartshorne,et al.  Algebraic geometry , 1977, Graduate texts in mathematics.

[62]  Richard Zippel,et al.  Probabilistic algorithms for sparse polynomials , 1979, EUROSAM.

[63]  László Lovász,et al.  Factoring polynomials with rational coefficients , 1982 .

[64]  Pablo Solernó,et al.  On the Computation of the Radical of Polynomial Complete Intersection Ideals , 1995, AAECC.

[65]  K. Ramachandra,et al.  Vermeidung von Divisionen. , 1973 .

[66]  T. Willmore Algebraic Geometry , 1973, Nature.

[67]  Joos Heintz On the Computational Complexity of Polynomials and Bilinear Mappings. A Survey , 1987, AAECC.

[68]  D. Grigor'ev,et al.  Factorization of polynomials over a finite field and the solution of systems of algebraic equations , 1986 .

[69]  Oscar Zariski,et al.  Commutative Algebra II , 1976 .