Deformation techniques to solve generalised Pham systems
暂无分享,去创建一个
[1] Marc Giusti,et al. On the efficiency of effective Nullstellensätze , 2005, computational complexity.
[2] S. Smale,et al. Complexity of Bezout’s Theorem II Volumes and Probabilities , 1993 .
[3] K. Mulmuley. A fast parallel algorithm to compute the rank of a matrix over an arbitrary field , 1987, Comb..
[4] 一松 信,et al. R.C. Gunning and H.Rossi: Analytic Functions of Several Complex Variables, Prentice-Hall, Englewood Cliffs, N.J., 1965, 317頁, 15×23cm, $12.50. , 1965 .
[5] S. Smale,et al. Complexity of Bezout's theorem IV: probability of success; extensions , 1996 .
[6] I. Shafarevich,et al. Basic algebraic geometry 1 (2nd, revised and expanded ed.) , 1994 .
[7] Stephen Smale,et al. Complexity of Bezout's Theorem V: Polynomial Time , 1994, Theor. Comput. Sci..
[8] S. Comput,et al. POLYNOMIAL-TIME REDUCTIONS FROM MULTIVARIATE TO BI- AND UNIVARIATE INTEGRAL POLYNOMIAL FACTORIZATION* , 1985 .
[9] Jacob T. Schwartz,et al. Fast Probabilistic Algorithms for Verification of Polynomial Identities , 1980, J. ACM.
[10] Luis M. Pardo,et al. Kronecker's and Newton's Approaches to Solving: A First Comparison , 2001, J. Complex..
[11] Victor Y. Pan,et al. Multivariate Polynomials, Duality, and Structured Matrices , 2000, J. Complex..
[12] Richard Zippel,et al. Effective polynomial computation , 1993, The Kluwer international series in engineering and computer science.
[13] Jan Verschelde,et al. Toric Newton Method for Polynomial Homotopies , 2000, J. Symb. Comput..
[14] Joos Heintz,et al. Testing polynomials which are easy to compute (Extended Abstract) , 1980, STOC '80.
[15] Luis M. Pardo,et al. How Lower and Upper Complexity Bounds Meet in Elimination Theory , 1995, AAECC.
[16] S. D. Cohen. The Distribution of Galois Groups and Hilbert's Irreducibility Theorem , 1981 .
[17] Erich Kaltofen,et al. Factorization of Polynomials Given by Straight-Line Programs , 1989, Adv. Comput. Res..
[18] Andrew J. Sommese,et al. Numerical Decomposition of the Solution Sets of Polynomial Systems into Irreducible Components , 2000, SIAM J. Numer. Anal..
[19] Teresa Krick,et al. A computational method for diophantine approximation , 1996 .
[20] S. Smale,et al. Complexity of Bézout’s theorem. I. Geometric aspects , 1993 .
[21] Ketan Mulmuley,et al. A fast parallel algorithm to compute the rank of a matrix over an arbitrary field , 1986, STOC '86.
[22] J. E. Morais,et al. When Polynomial Equation Systems Can Be "Solved" Fast? , 1995, AAECC.
[23] L. Kronecker. Grundzüge einer arithmetischen Theorie der algebraischen Grössen. (Abdruck einer Festschrift zu Herrn E. E. Kummers Doctor-Jubiläum, 10. September 1881.). , 2022 .
[24] Grégoire Lecerf. Une alternative aux methodes de reecriture pour la resolution des systemes algebriques , 2001 .
[25] S. L. Kleiman. INTERSECTION THEORY (Ergebnisse der Mathematik und ihrer Grenzgebiete 3. Folge. Band 2) , 1985 .
[26] B. Mourrain,et al. Solving special polynomial systems by using structured matrices and algebraic residues , 1997 .
[27] J. E. Morais,et al. Straight--Line Programs in Geometric Elimination Theory , 1996, alg-geom/9609005.
[28] I. Shafarevich. Basic algebraic geometry , 1974 .
[29] Marc Giusti,et al. The Hardness of Polynomial Equation Solving , 2003, Found. Comput. Math..
[30] S. Smale. The fundamental theorem of algebra and complexity theory , 1981 .
[31] Joos Heintz,et al. On the Time–Space Complexity of Geometric Elimination Procedures , 2001, Applicable Algebra in Engineering, Communication and Computing.
[32] Heinz Kredel,et al. Gröbner Bases: A Computational Approach to Commutative Algebra , 1993 .
[33] 임종인,et al. Gröbner Bases와 응용 , 1995 .
[34] Joos Heintz,et al. Corrigendum: Definability and Fast Quantifier Elimination in Algebraically Closed Fields , 1983, Theor. Comput. Sci..
[35] Juan Sabia,et al. Bounds for traces in complete intersections and degrees in the Nullstellensatz , 1995, Applicable Algebra in Engineering, Communication and Computing.
[36] Stuart J. Berkowitz,et al. On Computing the Determinant in Small Parallel Time Using a Small Number of Processors , 1984, Inf. Process. Lett..
[37] J BerkowitzStuart. On computing the determinant in small parallel time using a small number of processors , 1984 .
[38] Alicia Dickenstein,et al. Computing multidimensional residues , 1994, alg-geom/9404011.
[39] W. Rheinboldt,et al. Pathways to Solutions, Fixed Points, and Equilibria. , 1983 .
[40] Teresa Krick,et al. Sharp estimates for the arithmetic Nullstellensatz , 1999, math/9911094.
[41] L. Csanky,et al. Fast parallel matrix inversion algorithms , 1975, 16th Annual Symposium on Foundations of Computer Science (sfcs 1975).
[42] Éric Schost,et al. Solving some overdetermined polynomial systems , 1999, ISSAC '99.
[43] Andrew J. Sommese. Numerical Irreducible Decomposition using Projections from Points on the Components , 2001 .
[44] Joos Heintz,et al. Deformation Techniques for Efficient Polynomial Equation Solving , 2000, J. Complex..
[45] Marc Giusti,et al. Lower bounds for diophantine approximations , 1997 .
[46] Jan van Leeuwen,et al. Handbook of Theoretical Computer Science, Vol. A: Algorithms and Complexity , 1994 .
[47] J. Maurice Rojas. Some Speed-Ups and Speed Limits for Real Algebraic Geometry , 2000, J. Complex..
[48] G. B. M. Zerr,et al. Algebra: 117-118 , 1900 .
[49] V. Pan,et al. Structured matrices and newton's iteration: unified approach , 2000 .
[50] L. Kronecker. Grundzüge einer arithmetischen Theorie der algebraische Grössen. , 2022 .
[51] J. E. Morais,et al. On the intrinsic complexity of the arithmetic Nullstellensatz , 2000 .
[52] Stephen Smale,et al. Complexity of Bezout's Theorem: III. Condition Number and Packing , 1993, J. Complex..
[53] B. Sturmfels. SOLVING SYSTEMS OF POLYNOMIAL EQUATIONS , 2002 .
[54] Marc Giusti,et al. Le rôle des structures de données dans les problèmes d'élimination , 1997 .
[55] Volker Strassen,et al. Algebraic Complexity Theory , 1991, Handbook of Theoretical Computer Science, Volume A: Algorithms and Complexity.
[56] Anatolii A. Logunov,et al. Analytic functions of several complex variables , 1965 .
[57] J. Verschelde,et al. Homotopies exploiting Newton polytopes for solving sparse polynomial systems , 1994 .
[58] Marc Giusti,et al. A Gröbner Free Alternative for Polynomial System Solving , 2001, J. Complex..
[59] José Enrique Morais San Miguel. Resolución eficaz de sistemas de ecuaciones polinomiales , 1998 .
[60] David Castro Esteban. Sobre la complejidad de la representación de variedades algebraicas , 2001 .
[61] Robin Hartshorne,et al. Algebraic geometry , 1977, Graduate texts in mathematics.
[62] Richard Zippel,et al. Probabilistic algorithms for sparse polynomials , 1979, EUROSAM.
[63] László Lovász,et al. Factoring polynomials with rational coefficients , 1982 .
[64] Pablo Solernó,et al. On the Computation of the Radical of Polynomial Complete Intersection Ideals , 1995, AAECC.
[65] K. Ramachandra,et al. Vermeidung von Divisionen. , 1973 .
[66] T. Willmore. Algebraic Geometry , 1973, Nature.
[67] Joos Heintz. On the Computational Complexity of Polynomials and Bilinear Mappings. A Survey , 1987, AAECC.
[68] D. Grigor'ev,et al. Factorization of polynomials over a finite field and the solution of systems of algebraic equations , 1986 .
[69] Oscar Zariski,et al. Commutative Algebra II , 1976 .