Bis(carbazolyl) derivatives of pyrene and tetrahydropyrene: Synthesis, structures, optical properties, electrochemistry, and electroluminescence

Tetrahydropyrene and pyrene have been functionalized in their 2,7-positions with carbazole and 3,6-di-tert-butylcarbazole groups, and the properties of these new compounds are compared to analogous carbazole and 3,6-di-tert-butylcarbazole derivatives of benzene and biphenyl using X-ray crystallography, UV-vis absorption and fluorescence spectroscopy, electrochemistry, and quantum-chemical calculations. The absorption spectra are similar to those of their biphenyl-bridged analogues, although TD-DFT calculations indicate a different description of the excited states in the pyrene case, with the lowest observed absorption no longer corresponding to the S0 → S1 transition. The 3,6-di-tert-butylcarbazole compounds show reversible electrochemical oxidations; the benzene, biphenyl, tetrahydropyrene, or pyrene bridging groups have little impact on the first oxidation potential. Bilayer organic light-emitting diodes incorporating the tetrahydropyrene and pyrene derivatives as emitters show deep-blue electroluminescence.

[1]  Bernard Kippelen,et al.  High-efficiency blue-green electrophosphorescent light-emitting devices using a bis-sulfone as host in the emitting layer , 2011 .

[2]  A. Becke Density-functional thermochemistry. III. The role of exact exchange , 1993 .

[3]  Yong Qiu,et al.  Strategies to Design Bipolar Small Molecules for OLEDs: Donor‐Acceptor Structure and Non‐Donor‐Acceptor Structure , 2011, Advanced materials.

[4]  I. B. Berlman Handbook of flourescence spectra of aromatic molecules , 1971 .

[5]  M. Frisch,et al.  Ab Initio Calculation of Vibrational Absorption and Circular Dichroism Spectra Using Density Functional Force Fields , 1994 .

[6]  Christoph Lambert,et al.  Crystal, molecular and electronic structure of N,N'-diphenyl-N,N'-bis(2,4-dimethylphenyl)-(1,1'-biphenyl)-4,4'-diamine and the corresponding radical cation. , 2004, Chemistry.

[7]  J. Brédas,et al.  Charge-transfer transitions in triarylamine mixed-valence systems: a joint density functional theory and vibronic coupling study. , 2002, Journal of the American Chemical Society.

[8]  Weibing Wu,et al.  9-Phenyl-3,6-bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-9H-carbazole , 2011, Acta crystallographica. Section E, Structure reports online.

[9]  Fang Wang,et al.  Synthesis and characterization of light-emitting materials composed of carbazole, pyrene and fluorene , 2006 .

[10]  Man Hoi Wong,et al.  How to make ohmic contacts to organic semiconductors. , 2004, Chemphyschem : a European journal of chemical physics and physical chemistry.

[11]  Christoph Lambert,et al.  Synthesis and spectroscopic properties of a hexapyrenylbenzene derivative. , 2006, Organic letters.

[12]  V. Rao,et al.  Synthesis of novel twisted carbazole–quinoxaline derivatives with 1,3,5-benzene core: bipolar molecules as hosts for phosphorescent OLEDs , 2011 .

[13]  Xiabin Jing,et al.  Novel hole-transporting materials based on 1,4-bis(carbazolyl)benzene for organic light-emitting devices , 2004 .

[14]  James F. Harrison,et al.  Ab Initio Study of Polycyclic Aromatic Hydrocarbons in Their Ground and Excited States , 1998 .

[15]  F. Neese,et al.  Double-hybrid density functional theory for excited electronic states of molecules. , 2007, The Journal of chemical physics.

[16]  Roman Trattnig,et al.  Designed Suppression of Aggregation in Polypyrene: Toward High‐Performance Blue‐Light‐Emitting Diodes , 2010, Advanced materials.

[17]  Wei Li,et al.  Novel fluorene/carbazole hybrids with steric bulk as host materials for blue organic electrophosphorescent devices , 2007 .

[18]  Maurice W. Windsor,et al.  RADIATIVE AND RADIATIONLESS PROCESSES IN AROMATIC MOLECULES: PYRENE. , 1969 .

[19]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[20]  Andreas Steffen,et al.  Experimental and theoretical studies of the photophysical properties of 2- and 2,7-functionalized pyrene derivatives. , 2011, Journal of the American Chemical Society.

[21]  Stephen R. Forrest,et al.  Electroluminescence mechanisms in organic light emitting devices employing a europium chelate doped in a wide energy gap bipolar conducting host , 2000 .

[22]  Yong Hwan Park,et al.  Theoretical investigation of electronic structures of the ground and excited states of pyrene and its derivatives , 2006 .

[23]  Rudolph A. Marcus,et al.  Electron transfer reactions in chemistry. Theory and experiment , 1993 .

[24]  Paul J. Low,et al.  Towards an understanding of structure–property relationships in hole-transport materials: The influence of molecular conformation on oxidation potential in poly(aryl)amines , 2005 .

[25]  Wim Klopper,et al.  Low-lying absorption and emission spectra of pyrene, 1,6-dithiapyrene, and tetrathiafulvalene: A comparison between ab initio and time-dependent density functional methods. , 2009, The Journal of chemical physics.

[26]  Anunay Samanta,et al.  The twisted structure of 9‐(4‐cyanophenyl)carbazole , 1999 .

[27]  Mark S. Gordon,et al.  Self‐consistent molecular orbital methods. XXIII. A polarization‐type basis set for second‐row elements , 1982 .

[28]  Rajib Mondal,et al.  Synthesis and photophysical properties of carbazole-based blue light-emitting dendrimers. , 2007, The Journal of organic chemistry.

[29]  Hiroshi Kageyama,et al.  Charge carrier transporting molecular materials and their applications in devices. , 2007, Chemical reviews.

[30]  Ta-Ya Chu,et al.  A morphologically stable host material for efficient phosphorescent green and red organic light emitting devices , 2008 .

[31]  Jingui Qin,et al.  Molecular design of host materials based on triphenylamine/oxadiazole hybrids for excellent deep-red phosphorescent organic light-emitting diodes , 2010 .

[32]  Paul H. Holloway,et al.  Electrophosphorescence from triplet excimers in poly-(N-vinylcarbazole) , 2007 .

[33]  Seth R. Marder,et al.  Trends in Electron-Vibration and Electronic Interactions in Bis(dimethylamino) Mixed-Valence Systems: A Joint Experimental and Theoretical Investigation† , 2008 .

[34]  Katsutoshi Nagai,et al.  Bright blue electroluminescence from poly(N‐vinylcarbazole) , 1993 .

[35]  John F. Hartwig,et al.  A Second-Generation Catalyst for Aryl Halide Amination: Mixed Secondary Amines from Aryl Halides and Primary Amines Catalyzed by (DPPF)PdCl2 , 1996 .

[36]  P. C. Hariharan,et al.  The influence of polarization functions on molecular orbital hydrogenation energies , 1973 .

[37]  Tzung-Fang Guo,et al.  Highly efficient greenish blue-emitting organic diodes based on pyrene derivatives , 2007 .

[38]  Jay D. Wadhawan,et al.  Electroanalytical Methods: Guide to Experiments and Applications. F. Scholz, Editor. Springer-Verlag: Berlin, 2002. 331 pp. 100 figures, 31 tables. £49.00 (€69.95 + VAT) ISBN: 3-540-42229-3 (hardcover) , 2002 .

[39]  Feng Liu,et al.  Efficient 9-alkylphenyl-9-pyrenylfluorene substituted pyrene derivatives with improved hole injection for blue light-emitting diodes , 2006 .

[40]  Joseph Shinar,et al.  Organic Light-Emitting Devices , 2004 .

[41]  Soon-Ki Kwon,et al.  Efficient Blue Light Emitting Diode by Using Anthracene Derivative with 3,5-Diphenylphenyl Wings at 9- and 10-Position , 2007 .

[42]  Scott D. Allen,et al.  Efficient Synthesis of 4,5,9,10-Tetrahydropyrene: A Useful Synthetic Intermediate for the Synthesis of 2,7-Disubstituted Pyrenes. , 1999, The Journal of organic chemistry.

[43]  J. Brédas,et al.  Hole- and electron-vibrational couplings in oligoacene crystals: intramolecular contributions. , 2002, Physical review letters.

[44]  Yu Wang,et al.  High-efficiency and multi-function blue fluorescent material for organic electroluminescent devices , 2008 .

[45]  T. Toru,et al.  Ab initio MRSD-CI calculations of the ground and the two lowest-lying excited states of pyrene , 2000 .

[46]  Stefan Grimme,et al.  A TDDFT study of the lowest excitation energies of polycyclic aromatic hydrocarbons , 2003 .

[47]  Yun Chi,et al.  Indolo[3,2-b]carbazole/benzimidazole hybrid bipolar host materials for highly efficient red, yellow, and green phosphorescent organic light emitting diodes , 2012 .

[48]  Massimo Malagoli,et al.  Density functional theory study of the geometric structure and energetics of triphenylamine-based hole-transporting molecules , 2000 .

[49]  Henry Taube,et al.  METAL TO METAL INTERACTIONS IN WEAKLY COUPLED MIXED-VALENCE COMPLEXES BASED ON RUTHENIUM AMMINES , 1981 .

[50]  Patrice L. Baldeck,et al.  Optical limiting in the visible range: molecular engineering around N4,N4′-bis(4-methoxyphenyl)-N4,N4′-diphenyl-4,4′-diaminobiphenyl , 2003 .

[51]  Bo-Cheng Wang,et al.  Theoretical investigation the electroluminescence characteristics of pyrene and its derivatives , 2003 .

[52]  C. A. Parker Photoluminescence of Solutions: With Applications to Photochemistry and Analytical Chemistry , 1968 .

[53]  I. H. Munro,et al.  'Excimer’ fluorescence II. Lifetime studies of pyrene solutions , 1963, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[54]  Dongge Ma,et al.  Carbazole-based hole-transporting materials for electroluminescent devices , 2003 .

[55]  Roman Trattnig,et al.  Deep blue polymer light emitting diodes based on easy to synthesize, non-aggregating polypyrene. , 2011, Optics express.

[56]  Xinjun Xu,et al.  Zigzag molecules from pyrene-modified carbazole oligomers: synthesis, characterization, and application in OLEDs. , 2008, The Journal of organic chemistry.

[57]  Jean-Luc Brédas,et al.  Hole-vibronic coupling in oligothiophenes: impact of backbone torsional flexibility on relaxation energies , 2007, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[58]  Daoben Zhu,et al.  Carbazole–pyrene-based organic emitters for electroluminescent device , 2005 .

[59]  C. Tang,et al.  Organic Electroluminescent Diodes , 1987 .

[60]  Hong-Yan Li,et al.  Highly Efficient Green and Blue‐Green Phosphorescent OLEDs Based on Iridium Complexes with the Tetraphenylimidodiphosphinate Ligand , 2011, Advanced materials.

[61]  Egbert Zojer,et al.  Synthesis and Photophysical Properties of 3,6-Diphenyl-9-hexyl-9H-carbazole Derivatives Bearing Electron Withdrawing Groups , 2008 .

[62]  Robert F. Nelson,et al.  Electrochemical and Spectroscopic Properties of Cation Radicals III . Reaction Pathways of Carbazolium Radical Ions , 1975 .

[63]  Stefan Grimme,et al.  Density functional calculations of the vibronic structure of electronic absorption spectra. , 2004, The Journal of chemical physics.

[64]  Mark E. Thompson,et al.  Asymmetric Triaryldiamines as Thermally Stable Hole Transporting Layers for Organic Light-Emitting Devices , 1998 .

[65]  Christoph Lambert,et al.  The Class II/III Transition in Triarylamine Redox Systems , 1999 .

[66]  Bo Qu,et al.  Recent Progresses on Materials for Electrophosphorescent Organic Light‐Emitting Devices , 2011, Advanced materials.

[67]  J. Lakowicz Principles of fluorescence spectroscopy , 1983 .

[68]  Stefan Grimme,et al.  Substantial errors from time-dependent density functional theory for the calculation of excited states of large pi systems. , 2003, Chemphyschem : a European journal of chemical physics and physical chemistry.

[69]  Yuguang Ma,et al.  Phenanthro[9,10-d]imidazole as a new building block for blue light emitting materials , 2011 .

[70]  Andreas Winter,et al.  Recent Developments in the Application of Phosphorescent Iridium(III) Complex Systems , 2009 .

[71]  John P. Wolfe,et al.  An Improved Catalyst System for Aromatic Carbon−Nitrogen Bond Formation: The Possible Involvement of Bis(Phosphine) Palladium Complexes as Key Intermediates , 1996 .

[72]  Parr,et al.  Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. , 1988, Physical review. B, Condensed matter.

[73]  Yu Liu,et al.  Pi-conjugated aromatic enynes as a single-emitting component for white electroluminescence. , 2006, Journal of the American Chemical Society.

[74]  György Inzelt,et al.  Formation and redox behaviour of polycarbazole prepared by electropolymerization of solid carbazole crystals immobilized on an electrode surface , 2003 .

[75]  S. Schulman,et al.  Introduction to fluorescence spectroscopy , 1999 .

[76]  Yu-Tai Tao,et al.  Novel Green Light‐Emitting Carbazole Derivatives: Potential Electroluminescent Materials , 2000 .

[77]  O. Wenger,et al.  Organic mixed valence. , 2011, Chemical reviews.

[78]  R. F. Nelson,et al.  Anodic Oxidation Pathways of Carbazoles I . Carbazole and N‐Substituted Derivatives , 1968 .

[79]  S. H. Vosko,et al.  Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis , 1980 .

[80]  Saulius Jursenas,et al.  Pyrenyl-Functionalized Fluorene and Carbazole Derivatives as Blue Light Emitters , 2012 .

[81]  Th. Förster,et al.  Ein Konzentrationsumschlag der Fluoreszenz des Pyrens , 1954, Zeitschrift für Elektrochemie, Berichte der Bunsengesellschaft für physikalische Chemie.

[82]  Bernard Kippelen,et al.  2,7‐Bis(diarylamino)‐9,9‐dimethylfluorenes as Hole‐Transport Materials for Organic Light‐Emitting Diodes , 2003 .

[83]  A. Monkman,et al.  The photophysics of singlet, triplet, and degradation trap states in 4,4-N,N(')-dicarbazolyl-1,1(')-biphenyl. , 2009, The Journal of chemical physics.

[84]  Neal R. Armstrong,et al.  Electrochemistry and Electrogenerated Chemiluminescence Processes of the Components of Aluminum Quinolate/Triarylamine, and Related Organic Light-Emitting Diodes , 1998 .

[85]  Heinrich Vollmann,et al.  Beiträge zur Kenntnis des Pyrens und seiner Derivate , 1937 .

[86]  Wim Dehaen,et al.  Synthesis of soluble oligocarbazole derivatives , 2003 .

[87]  Qiang Wang,et al.  A simple carbazole/oxadiazole hybrid molecule: an excellent bipolar host for green and red phosphorescent OLEDs. , 2008, Angewandte Chemie.

[88]  Tomonori Yamada,et al.  Revealing bipolar charge-transport property of 4,4′-N,N′-dicarbazolylbiphenyl (CBP) by quantum chemical calculations , 2011 .

[89]  Th. Förster,et al.  Handbook of Fluorescence Spectra of Aromatic Molecules , 1973 .

[90]  Sebastian Nau,et al.  Core, shell, and surface-optimized dendrimers for blue light-emitting diodes. , 2011, Journal of the American Chemical Society.

[91]  Hiroyoshi Naito,et al.  Charge Carrier Transport in Neat Thin Films of Phosphorescent Iridium Complexes , 2005 .

[92]  Olga Kennard,et al.  Tables of bond lengths determined by X-ray and neutron diffraction. Part 1. Bond lengths in organic compounds , 1987 .

[93]  Bernard Kippelen,et al.  Polymers with Carbazole-Oxadiazole Side Chains as Ambipolar Hosts for Phosphorescent Light-Emitting Diodes , 2011 .

[94]  R. Harvey,et al.  Synthesis of 2,7-dibromopyrene , 1986 .

[95]  Jianmin Shi,et al.  Photophysical properties of anthanthrene-based tunable blue emitters. , 2005, The journal of physical chemistry. A.

[96]  J. K. Thomas,et al.  Environmental effects on vibronic band intensities in pyrene monomer fluorescence and their application in studies of micellar systems , 1977 .