Excited state quantum-classical molecular dynamics

We are focusing on developing a predictive theoretical, algorithmic and computational framework describing the many-body dynamics of the plasma–wall interactions by applying multiscale quantum-classical (QC) molecular dynamics (MD) and quantum chemistry approaches. Computer simulations of the dynamics of molecular systems often encounter serious limitations, of both phenomenological and quantitative nature, due to our inability to treat non-adiabatic transition dynamics and evolution beyond the ground Born–Oppenheimer electronic surface. This is, in particular, present due to charge transfer, collisional-cascade excitations and chemical sputtering of plasma ions impinging on a plasma-facing surface. A quantum mechanical treatment of the full non-adiabatic multibody dynamics is not currently feasible. To address existing deficiencies in knowledge of non-adiabatic MD, we propose excited state many-body dynamics by considering multiphysics described by time-dependent versions of the mean-field theories as well as QC Liouville equations, combined with multiresolution techniques for solving the quantum part of the problem.

[1]  Craig C. Martens,et al.  Simulation of Coherent Nonadiabatic Dynamics Using Classical Trajectories , 1998 .

[2]  J. Tully,et al.  Trajectory Surface Hopping Approach to Nonadiabatic Molecular Collisions: The Reaction of H+ with D2 , 1971 .

[3]  E. Wigner On the quantum correction for thermodynamic equilibrium , 1932 .

[4]  D. Micha,et al.  Time-dependent many-electron approach to slow ion-atom collisions for systems with several active electrons , 2000 .

[5]  D. Yeager,et al.  A multiconfigurational linear response study of N2 , 1989 .

[6]  J. Keinonen,et al.  Effects of the surface structure and cluster bombardment on the self-sputtering of molybdenum , 2003 .

[7]  R. Janev,et al.  Inelastic processes in slow collisions of antiprotons with hydrogenic ions , 1996 .

[8]  Ruedi Seiler,et al.  On the Born-Oppenheimer expansion for polyatomic molecules , 1992 .

[9]  Jürgen Zanghellini,et al.  An MCTDHF approach to multielectron dynamics in laser fields , 2003 .

[10]  E. Heller Time‐dependent approach to semiclassical dynamics , 1975 .

[11]  Tosio Kato On the Adiabatic Theorem of Quantum Mechanics , 1950 .

[12]  Kai Nordlund,et al.  Swift chemical sputtering of amorphous hydrogenated carbon , 2001 .

[13]  José Campos-Martínez,et al.  Application of the time‐dependent Hartree grid–configuration interaction method to the desorption of diatomic molecules from solid surfaces , 1993 .

[14]  Jürgen Zanghellini,et al.  Testing the multi-configuration time-dependent Hartree-Fock method , 2004 .

[15]  Satoshi Yokojima,et al.  Localized-density-matrix implementation of time-dependent density-functional theory , 2003 .

[16]  R. F. Wood,et al.  Multiscale simulations of carbon nanotube nucleation and growth: electronic structure calculations. , 2004, Journal of nanoscience and nanotechnology.

[17]  R. Schneider,et al.  Multi–scale modeling of hydrogen isotope diffusion in graphite , 2004 .

[18]  G. Beylkin,et al.  Multiresolution quantum chemistry in multiwavelet bases: Analytic derivatives for Hartree-Fock and density functional theory. , 2004, The Journal of chemical physics.

[19]  Mark A. Ratner,et al.  Time‐dependent self‐consistent field approximation for intramolecular energy transfer. I. Formulation and application to dissociation of van der Waals molecules , 1982 .

[20]  D. Yarkony Diabolical conical intersections , 1996 .

[21]  Schultz,et al.  New Method for Treating Slow Multielectron, Multicenter Atomic Collisions. , 1996, Physical review letters.

[22]  I. Horenko,et al.  Fully adaptive propagation of the quantum-classical Liouville equation. , 2004, The Journal of chemical physics.

[23]  P. Markowich,et al.  A Wigner‐function approach to (semi)classical limits: Electrons in a periodic potential , 1994 .

[24]  K. J. McCann,et al.  New semiclassical treatments of rotational and vibrational transitions in heavy‐particle collisions. I. H–H2 and He–H2 collisions , 1975 .

[25]  V. Fock,et al.  Beweis des Adiabatensatzes , 1928 .

[26]  C. Zener Non-Adiabatic Crossing of Energy Levels , 1932 .

[27]  Gerhard Stock,et al.  Theory of Ultrafast Nonadiabatic Excited‐State Processes and their Spectroscopic Detection in Real Time , 2007 .

[28]  Jianshu Cao,et al.  The formulation of quantum statistical mechanics based on the Feynman path centroid density. II. Dynamical properties , 1994 .

[29]  George A. Hagedorn,et al.  Electron energy level crossings in the time-dependent Born-Oppenheimer approximation , 1990 .

[30]  Tommy Ahlgren,et al.  Suppression of carbon erosion by hydrogen shielding during high-flux hydrogen bombardment , 1999 .

[31]  P. Krstic,et al.  Inelastic transitions in slow heavy-particle atomic collisions , 2001 .

[32]  Craig C. Martens,et al.  Semiclassical-limit molecular dynamics on multiple electronic surfaces , 1997 .

[33]  D. Micha TIME-DEPENDENT MANY-ELECTRON TREATMENT OF ELECTRONIC ENERGY AND CHARGE TRANSFER IN ATOMIC COLLISIONS , 1999 .

[34]  Robert J. Harrison,et al.  Singular operators in multiwavelet bases , 2004, IBM J. Res. Dev..

[35]  J. Keinonen,et al.  Obtaining Distributions of Plasma Impurities Using Atomistic Simulations , 2002 .

[36]  P. Pechukas,et al.  TIME-DEPENDENT SEMICLASSICAL SCATTERING THEORY. I. POTENTIAL SCATTERING. , 1969 .

[37]  Gregory Beylkin,et al.  Multiresolution quantum chemistry: basic theory and initial applications. , 2004, The Journal of chemical physics.

[38]  D. Coker,et al.  NONADIABATIC MOLECULAR DYNAMICS SIMULATION OF PHOTODISSOCIATION AND GEMINATE RECOMBINATION OF I2 LIQUID XENON , 1996 .

[39]  Gerhard Stock,et al.  Surface-hopping modeling of photoinduced relaxation dynamics on coupled potential-energy surfaces , 1997 .

[40]  B. Garrison,et al.  Matrix and substrate effects on the sputtering of a 2 kDa molecule: Insights from molecular dynamics , 2003 .

[41]  William H. Miller,et al.  Classical S Matrix: Numerical Application to Inelastic Collisions , 1970 .

[42]  C. Schütte,et al.  Quantum‐classical molecular dynamics as an approximation to full quantum dynamics , 1996 .

[43]  Roger Smith,et al.  Molecular-dynamics simulations of sputtering , 2004, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[44]  N Makri,et al.  Time-dependent quantum methods for large systems. , 1999, Annual review of physical chemistry.

[45]  A. Joye Proof of the Landau–Zener formula , 1994 .

[46]  R. Coalson,et al.  Adding configuration interaction to the time‐dependent Hartree grid approximation , 1990 .

[47]  J. Keinonen,et al.  Tight-binding atomistic simulations of hydrocarbon sputtering by hyperthermal ions in tokamak divertors , 2002 .

[48]  G. Ciccotti,et al.  Mixed quantum-classical dynamics , 1999 .

[49]  G. Hagedorn Semiclassical quantum mechanics , 1980 .

[50]  M. Beck,et al.  The multiconfiguration time-dependent Hartree (MCTDH) method: A highly efficient algorithm for propa , 1999 .

[51]  W. Heisenberg,et al.  Zur Quantentheorie der Molekeln , 1924 .

[52]  Kulander Time-dependent Hartree-Fock theory of multiphoton ionization: Helium. , 1987, Physical review. A, General physics.