Zinc metabolism was studied in 32 normal volunteers after oral (n = 25) or intravenous (n = 7) administration of 65Zn. Data were collected from the blood, urine, feces, whole body, and over the liver and thigh regions for 9 mo while the subjects consumed their regular diets (containing 10 mg Zn ion/day) and for an additional 9 mo while the subjects received an exogenous oral supplement of 100 mg Zn ion/day. Data from each subject were fitted by a compartmental model for zinc metabolism that was developed previously for patients with taste and smell dysfunction. These data from normal subjects were used to determine the absorption, distribution, and excretion of zinc and the mass of zinc in erythrocytes, liver, thigh, and whole body. By use of additional data obtained from the present study, the model was refined further such that a large compartment, which was previously determined to contain 90% of the body zinc, was subdivided into two compartments to represent zinc in muscle and bone. When oral zinc intake was increased 11-fold three new sites of regulation of zinc metabolism were identified in addition to the two sites previously defined in patients with taste and smell dysfunction (absorption of zinc from gut and excretion of zinc in urine). The three new sites are exchange of zinc with erythrocytes, release of zinc by muscle, and secretion of zinc into gut. Regulation at these five sites appears to maintain some tissue concentrations of zinc when dietary zinc increases.