Corrigendum: ChEC-seq kinetics discriminates transcription factor binding sites by DNA sequence and shape in vivo

[1]  Beibei Xin,et al.  ChEC-seq kinetics discriminates transcription factor binding sites by DNA sequence and shape in vivo , 2015, Nature Communications.

[2]  R. Mann,et al.  Deconvolving the Recognition of DNA Shape from Sequence , 2015, Cell.

[3]  R. Mann,et al.  Quantitative modeling of transcription factor binding specificities using DNA shape , 2015, Proceedings of the National Academy of Sciences.

[4]  Aleksandar Stojmirovic,et al.  Log-odds sequence logos , 2015, Bioinform..

[5]  Julia Zeitlinger,et al.  ChIP-nexus: a novel ChIP-exo protocol for improved detection of in vivo transcription factor binding footprints , 2014, Nature Biotechnology.

[6]  Myong-Hee Sung,et al.  DNase footprint signatures are dictated by factor dynamics and DNA sequence. , 2014, Molecular cell.

[7]  Steven Henikoff,et al.  High-resolution digital profiling of the epigenome , 2014, Nature Reviews Genetics.

[8]  Steven Henikoff,et al.  The nucleosomal barrier to promoter escape by RNA polymerase II is overcome by the chromatin remodeler Chd1 , 2014, eLife.

[9]  Jeffry D. Sander,et al.  CRISPR-Cas systems for editing, regulating and targeting genomes , 2014, Nature Biotechnology.

[10]  Wesley R. Legant,et al.  Single-Molecule Dynamics of Enhanceosome Assembly in Embryonic Stem Cells , 2014, Cell.

[11]  Lin Yang,et al.  TFBSshape: a motif database for DNA shape features of transcription factor binding sites , 2013, Nucleic Acids Res..

[12]  Vishwanath R. Iyer,et al.  Widespread Misinterpretable ChIP-seq Bias in Yeast , 2013, PloS one.

[13]  Alexander van Oudenaarden,et al.  Highly expressed loci are vulnerable to misleading ChIP localization of multiple unrelated proteins , 2013, Proceedings of the National Academy of Sciences.

[14]  S. Henikoff,et al.  Mot1 Redistributes TBP from TATA-Containing to TATA-Less Promoters , 2013, Molecular and Cellular Biology.

[15]  S. Bekiranov,et al.  Measuring Chromatin Interaction Dynamics on the Second Time Scale at Single-Copy Genes , 2013, Science.

[16]  U. Matti,et al.  Snapin accelerates exocytosis at low intracellular calcium concentration in mouse chromaffin cells. , 2013, Cell calcium.

[17]  Lin Yang,et al.  DNAshape: a method for the high-throughput prediction of DNA structural features on a genomic scale , 2013, Nucleic Acids Res..

[18]  T. Hughes,et al.  A Compendium of Nucleosome and Transcript Profiles Reveals Determinants of Chromatin Architecture and Transcription , 2013, PLoS genetics.

[19]  Steven Henikoff,et al.  High-resolution mapping of transcription factor binding sites on native chromatin , 2013, Epigenetics & Chromatin.

[20]  J. Ricort,et al.  Insulin-Like Growth Factor Binding Proteins Increase Intracellular Calcium Levels in Two Different Cell Lines , 2013, PloS one.

[21]  S. Henikoff,et al.  ISWI and CHD chromatin remodelers bind to promoters but act in gene bodies , 2013, Epigenetics & Chromatin.

[22]  James B. Brown,et al.  DNA regions bound at low occupancy by transcription factors do not drive patterned reporter gene expression in Drosophila , 2012, Proceedings of the National Academy of Sciences.

[23]  Shane J. Neph,et al.  An expansive human regulatory lexicon encoded in transcription factor footprints , 2012, Nature.

[24]  A. Németh,et al.  The Reb1‐homologue Ydr026c/Nsi1 is required for efficient RNA polymerase I termination in yeast , 2012, The EMBO journal.

[25]  Richard S. Sandstrom,et al.  BEDOPS: high-performance genomic feature operations , 2012, Bioinform..

[26]  Christine Grienberger,et al.  Imaging Calcium in Neurons , 2012, Neuron.

[27]  M. Johnston,et al.  “Calling Cards” for DNA-Binding Proteins in Mammalian Cells , 2012, Genetics.

[28]  Guillaume J. Filion,et al.  The inner nuclear membrane proteins Man1 and Ima1 link to two different types of chromatin at the nuclear periphery in S. pombe , 2012, Nucleus.

[29]  Gary D. Stormo,et al.  ScerTF: a comprehensive database of benchmarked position weight matrices for Saccharomyces species , 2011, Nucleic Acids Res..

[30]  Y. Le Bihan,et al.  The orientation of the C-terminal domain of the Saccharomyces cerevisiae Rap1 protein is determined by its binding to DNA , 2011, Nucleic acids research.

[31]  S. Henikoff,et al.  Tripartite organization of centromeric chromatin in budding yeast , 2011, Proceedings of the National Academy of Sciences.

[32]  B. Pugh,et al.  Comprehensive Genome-wide Protein-DNA Interactions Detected at Single-Nucleotide Resolution , 2011, Cell.

[33]  S. Henikoff,et al.  Epigenome characterization at single base-pair resolution , 2011, Proceedings of the National Academy of Sciences.

[34]  M. Biggin Animal transcription networks as highly connected, quantitative continua. , 2011, Developmental cell.

[35]  Philip Machanick,et al.  MEME-ChIP: motif analysis of large DNA datasets , 2011, Bioinform..

[36]  William Stafford Noble,et al.  FIMO: scanning for occurrences of a given motif , 2011, Bioinform..

[37]  M. Palumbo,et al.  Extensive role of the general regulatory factors, Abf1 and Rap1, in determining genome-wide chromatin structure in budding yeast , 2010, Nucleic acids research.

[38]  Guillaume J. Filion,et al.  Systematic Protein Location Mapping Reveals Five Principal Chromatin Types in Drosophila Cells , 2010, Cell.

[39]  Janet M Thornton,et al.  DamID in C. elegans reveals longevity-associated targets of DAF-16/FoxO , 2010, Molecular systems biology.

[40]  J. Griesenbeck,et al.  Alternative Chromatin Structures of the 35S rRNA Genes in Saccharomyces cerevisiae Provide a Molecular Basis for the Selective Recruitment of RNA Polymerases I and II , 2010, Molecular and Cellular Biology.

[41]  Aaron R. Quinlan,et al.  Bioinformatics Applications Note Genome Analysis Bedtools: a Flexible Suite of Utilities for Comparing Genomic Features , 2022 .

[42]  M. Eisen,et al.  Impact of Chromatin Structures on DNA Processing for Genomic Analyses , 2009, PloS one.

[43]  D. G. Gibson,et al.  Enzymatic assembly of DNA molecules up to several hundred kilobases , 2009, Nature Methods.

[44]  H. Madhani,et al.  Mechanisms that Specify Promoter Nucleosome Location and Identity , 2009, Cell.

[45]  K. Struhl,et al.  Where Does Mediator Bind In Vivo? , 2009, PloS one.

[46]  Cynthia Wolberger,et al.  Structural and functional studies of the Rap1 C-terminus reveal novel separation-of-function mutants. , 2008, Journal of molecular biology.

[47]  J. Griesenbeck,et al.  Actively transcribed rRNA genes in S. cerevisiae are organized in a specialized chromatin associated with the high-mobility group protein Hmo1 and are largely devoid of histone molecules. , 2008, Genes & development.

[48]  Bas van Steensel,et al.  Detection of in vivo protein–DNA interactions using DamID in mammalian cells , 2007, Nature Protocols.

[49]  V. Gaudin,et al.  DamID, a new tool for studying plant chromatin profiling in vivo, and its use to identify putative LHP1 target loci. , 2006, The Plant journal : for cell and molecular biology.

[50]  U. K. Laemmli,et al.  Nup-PI: the nucleopore-promoter interaction of genes in yeast. , 2006, Molecular cell.

[51]  Ting Wang,et al.  An improved map of conserved regulatory sites for Saccharomyces cerevisiae , 2006, BMC Bioinformatics.

[52]  Ulrich K Laemmli,et al.  ChIC and ChEC; genomic mapping of chromatin proteins. , 2004, Molecular cell.

[53]  S Miyano,et al.  Open source clustering software. , 2004, Bioinformatics.

[54]  L. Mirny,et al.  Kinetics of protein-DNA interaction: facilitated target location in sequence-dependent potential. , 2004, Biophysical journal.

[55]  E. O’Shea,et al.  Global analysis of protein expression in yeast , 2003, Nature.

[56]  W. Wilkison,et al.  Melanocortin receptor-mediated mobilization of intracellular free calcium in HEK293 cells. , 2001, Physiological genomics.

[57]  F. Lyng,et al.  Rapid Androgen Actions on Calcium Signaling in Rat Sertoli Cells and Two Human Prostatic Cell Lines: Similar Biphasic Responses Between 1 Picomolar and 100 Nanomolar Concentrations1 , 2000, Biology of reproduction.

[58]  V. Kushnirov Rapid and reliable protein extraction from yeast , 2000, Yeast.

[59]  S. Henikoff,et al.  Identification of in vivo DNA targets of chromatin proteins using tethered Dam methyltransferase , 2000, Nature Biotechnology.

[60]  B. Stillman,et al.  Yeast autonomously replicating sequence binding factor is involved in nucleotide excision repair. , 1999, Genes & development.

[61]  V Jackson,et al.  Formaldehyde cross-linking for studying nucleosomal dynamics. , 1999, Methods.

[62]  P. Philippsen,et al.  Additional modules for versatile and economical PCR‐based gene deletion and modification in Saccharomyces cerevisiae , 1998, Yeast.

[63]  I. Graham,et al.  A Reb1p‐binding site is required for efficient activation of the yeast RAP1 gene, but multiple binding sites for Rap1p are not essential , 1994, Molecular microbiology.

[64]  K. Gable,et al.  Regulation of cellular Ca2+ by yeast vacuoles. , 1994, The Journal of biological chemistry.

[65]  E W Scott,et al.  Concerted action of the transcriptional activators REB1, RAP1, and GCR1 in the high-level expression of the glycolytic gene TPI , 1993, Molecular and cellular biology.

[66]  R. Reeder,et al.  The REB1 site is an essential component of a terminator for RNA polymerase I in Saccharomyces cerevisiae , 1993, Molecular and cellular biology.

[67]  S. Elsasser,et al.  Role of multifunctional autonomously replicating sequence binding factor 1 in the initiation of DNA replication and transcriptional control in Saccharomyces cerevisiae , 1992, Molecular and cellular biology.

[68]  A. Hinnebusch,et al.  Association of RAP1 binding sites with stringent control of ribosomal protein gene transcription in Saccharomyces cerevisiae , 1991, Molecular and cellular biology.

[69]  D. Shore,et al.  Involvement of the silencer and UAS binding protein RAP1 in regulation of telomere length , 1990, Science.

[70]  L. Squire,et al.  Memory, Visual Discrimination Performance, and the Human Hippocampus , 2011, The Journal of Neuroscience.