An Abstract Framework for Elliptic Inverse Problems: Part 1. An Output Least-Squares Approach

The solution of an elliptic boundary value problem is an infinitely differentiable function of the coefficient in the partial differential equation. When the (coefficient-dependent) energy norm is used, the result is a smooth, convex output least-squares functional. Using total variation regularization, it is possible to estimate discontinuous coefficients from interior measurements. The minimization problem is guaranteed to have a solution, which can be obtained in the limit from finite-dimensional discretizations of the problem. These properties hold in an abstract framework that encompasses several interesting problems: the standard (scalar) elliptic BVP in divergence form, the system of isotropic elasticity, and others.

[1]  K. R. Raghavan,et al.  Forward and inverse problems in elasticity imaging of soft tissues , 1994 .

[2]  Joyce R. McLaughlin,et al.  Unique identifiability of elastic parameters from time-dependent interior displacement measurement , 2004 .

[3]  L. W. White,et al.  Continuity and Uniqueness of Regularized Output Least Squares Optimal Estimators , 1995 .

[4]  T. Chan,et al.  Level set and total variation regularization for elliptic inverse problems with discontinuous coefficients , 2004 .

[5]  Robert V. Kohn,et al.  A variational method for parameter identification , 1988 .

[6]  E. Giusti Minimal surfaces and functions of bounded variation , 1977 .

[7]  Gerard R. Richter,et al.  Numerical identification of a spatially varying diffusion coefficient , 1981 .

[8]  Zhiming Chen,et al.  An Augmented Lagrangian Method for Identifying Discontinuous Parameters in Elliptic Systems , 1999 .

[9]  Steven J. Cox,et al.  Recovering Planar Lame Moduli from a Single-Traction Experiment , 1997 .

[10]  K. Kunisch,et al.  Output least squares stability in elliptic systems , 1989 .

[11]  C. Kravaris,et al.  Identification of parameters in distributed parameter systems by regularization , 1983, The 22nd IEEE Conference on Decision and Control.

[12]  I. Knowles Parameter identification for elliptic problems , 2001 .

[13]  K. Kunisch,et al.  The augmented lagrangian method for parameter estimation in elliptic systems , 1990 .

[14]  M. Gockenbach,et al.  A Variational Method for Recovering Planar Lamé Moduli , 2002 .

[15]  Joyce R. McLaughlin,et al.  Recovery of the Lamé parameter μ in biological tissues , 2003 .

[16]  C. Vogel,et al.  Analysis of bounded variation penalty methods for ill-posed problems , 1994 .

[17]  Karl Kunisch,et al.  Estimation Techniques for Distributed Parameter Systems , 1989 .

[18]  Assad A. Oberai,et al.  INVERSE PROBLEMS PII: S0266-5611(03)54272-1 Solution of inverse problems in elasticity imaging using the adjoint method , 2003 .

[19]  Jun Zou,et al.  Numerical methods for elliptic inverse problems , 1998, Int. J. Comput. Math..

[20]  H. Engl,et al.  Regularization of Inverse Problems , 1996 .

[21]  Richard S. Falk,et al.  Error estimates for the numerical identification of a variable coefficient , 1983 .

[22]  Lin Ji,et al.  Recovery of the Lam´ ep arameter µ in biological tissues , 2004 .