Periodic Compensation of Continuous-Time Plants

This note presents a periodic compensator which achieves robust stability for single-input-single-output (SISO), linear time invariant (LTI) plants having both right-half plane (RHP) poles and zeros, a job LTI controllers fail to do. In addition, for strictly proper plants this controller achieves model matching ensuring at the same time that the periodic oscillations present in the plant output are insignificant in magnitude. The design steps are straightforward and linear algebraic in nature

[1]  K. Poolla,et al.  Robust control of linear time-invariant plants using periodic compensation , 1985 .

[2]  G. Goodwin,et al.  Generalized sample hold functions-frequency domain analysis of robustness, sensitivity, and intersample difficulties , 1994, IEEE Trans. Autom. Control..

[3]  Sarit K. Das,et al.  Techniques of Analysis and Robust Control via Zero-Placement of Periodically Compensated Discrete-Time Plants , 1996 .

[4]  J. Shamma,et al.  Time-varying versus time-invariant compensation for rejection of persistent bounded disturbances and robust stabilization , 1991 .

[5]  Benjamin C. Kuo,et al.  AUTOMATIC CONTROL SYSTEMS , 1962, Universum:Technical sciences.

[6]  K. Shujaee,et al.  Vibrational feedback control of time delay systems , 1997, IEEE Trans. Autom. Control..

[7]  Semyon M. Meerkov,et al.  Vibrational feedback control in the problem of acoustic stability , 1991 .

[8]  Wei-Yong Yan,et al.  On the gain margin improvement using dynamic compensation based on generalized sampled-data hold functions , 1994, IEEE Trans. Autom. Control..

[9]  Richard H. Middleton,et al.  Robustness of zero shifting via generalized sampled-data hold functions , 1997, IEEE Trans. Autom. Control..

[10]  P. K. Rajagopalan,et al.  Periodic discrete-time systems: stability analysis and robust control using zero placement , 1992 .

[11]  Bruce A. Francis,et al.  Feedback Control Theory , 1992 .

[12]  P. Kabamba Control of Linear Systems Using Generalized Sampled-Data Hold Functions , 1987, 1987 American Control Conference.

[13]  S. M. Merkov,et al.  Vibrational feedback control in the problem of absolute stability , 1989, Proceedings of the 28th IEEE Conference on Decision and Control,.

[14]  M. Dahleh,et al.  Analysis of time-varying control strategies for optimal disturbance rejection and robustness , 1992 .

[15]  T. Runolfsson,et al.  Vibrational feedback control: Zeros placement capabilities , 1987 .