Scaling and suppression of anomalous heating in ion traps.

We measure and characterize anomalous motional heating of an atomic ion confined in the lowest quantum levels of a novel rf ion trap that features moveable electrodes. The scaling of heating with electrode proximity is measured, and when the electrodes are cooled from 300 to 150 K, the heating rate is suppressed by an order of magnitude. This provides direct evidence that anomalous motional heating of trapped ions stems from microscopic noisy potentials on the electrodes that are thermally driven. These observations are relevant to decoherence in quantum information processing schemes based on trapped ions and perhaps other charge-based quantum systems.

[1]  Boris B. Blinov,et al.  Zero-point cooling and low heating of trapped {sup 111}Cd{sup +} ions , 2004, quant-ph/0404142.

[2]  C. Monroe,et al.  Experimental Bell inequality violation with an atom and a photon. , 2004, Physical review letters.

[3]  J. Camp,et al.  Macroscopic variations of surface potentials of conductors , 1991 .

[4]  H. Dehmelt,et al.  Radiofrequency Spectroscopy of Stored Ions I: Storage , 1968 .

[5]  M. A. Rowe,et al.  Heating of trapped ions from the quantum ground state , 2000 .

[6]  C Langer,et al.  Spectroscopy Using Quantum Logic , 2005, Science.

[7]  King,et al.  Resolved-sideband Raman cooling of a bound atom to the 3D zero-point energy. , 1995, Physical review letters.

[8]  C. Monroe,et al.  Experimental Issues in Coherent Quantum-State Manipulation of Trapped Atomic Ions , 1997, Journal of research of the National Institute of Standards and Technology.

[9]  T Yamamoto,et al.  Quantum noise in the josephson charge qubit. , 2004, Physical review letters.

[10]  Daniel F. V. James Theory of Heating of the Quantum Ground State of Trapped Ions , 1998 .

[11]  L. Deslauriers,et al.  T-junction ion trap array for two-dimensional ion shuttling, storage, and manipulation , 2005, quant-ph/0508097.

[12]  O. Gühne,et al.  03 21 7 2 3 M ar 2 00 6 Scalable multi-particle entanglement of trapped ions , 2006 .

[13]  R. B. Blakestad,et al.  Creation of a six-atom ‘Schrödinger cat’ state , 2005, Nature.

[14]  Martin Wilkens,et al.  Heating of trapped atoms near thermal surfaces , 1999 .

[15]  P. C. Haljan,et al.  Implementation of Grover's quantum search algorithm in a scalable system , 2005 .

[16]  J. Cirac,et al.  Quantum Computations with Cold Trapped Ions. , 1995, Physical review letters.

[17]  J. Hughes,et al.  Transport of Quantum States and Separation of Ions in a Dual Rf Ion Trap * , 2002 .

[18]  C. Monroe,et al.  Experimental demonstration of entanglement-enhanced rotation angle estimation using trapped ions. , 2001, Physical review letters.

[19]  S. Lamoreaux Thermalization of trapped ions: A quantum perturbation approach , 1997 .

[20]  Klaus Molmer,et al.  Multiparticle Entanglement of Hot Trapped Ions , 1998, quant-ph/9810040.

[21]  Gerard J. Milburn,et al.  Ion Trap Quantum Computing with Warm Ions , 2000 .

[22]  Herbert Walther,et al.  Novel miniature ion traps , 1993 .

[23]  J. Clarke,et al.  Flicker (1∕f) noise in the critical current of Josephson junctions at 0.09–4.2K , 2004 .

[24]  C. Monroe,et al.  Architecture for a large-scale ion-trap quantum computer , 2002, Nature.

[25]  M D Barrett,et al.  Implementation of the Semiclassical Quantum Fourier Transform in a Scalable System , 2005, Science.

[26]  C. Monroe,et al.  Experimental violation of a Bell's inequality with efficient detection , 2001, Nature.

[27]  C. Monroe,et al.  Experimental entanglement of four particles , 2000, Nature.

[28]  John M. Martinis,et al.  Decoherence of a superconducting qubit due to bias noise , 2003 .

[29]  F. Schmidt-Kaler,et al.  Realization of the Cirac–Zoller controlled-NOT quantum gate , 2003, Nature.