Polarization, energetics, and electrorheology in carbon nanotube suspensions under an applied electric field: An exact numerical approach

We theoretically investigate the polarization, aggregation, and yield stress in carbon nanotube suspensions under an electric field. The nanotubes are modeled as solid rods with hemispherical ends. An exact numerical approach, which includes self-consistent Coulomb interactions within classical electrostatics, is employed to derive nanotube surface charge densities. Two essential nanotube characteristics, i.e., large aspect ratios and end contributions, are included together. The reliability of the model is demonstrated by comparing the calculated emerging yields against experimental data. The onsets of system parameters can be used to control the phase transition in nanotube suspensions.

[1]  D. Milkie,et al.  Carbon Nanotube Aerogels , 2007 .

[2]  Joo-Hiuk Son,et al.  Terahertz electrical and optical characteristics of double-walled carbon nanotubes and their comparison with single-walled carbon nanotubes , 2007 .

[3]  H. Dai,et al.  In vivo biodistribution and highly efficient tumour targeting of carbon nanotubes in mice. , 2020, Nature nanotechnology.

[4]  Electrostatics of straight and bent single-walled carbon nanotubes , 2006 .

[5]  Chi-Yen Huang,et al.  Electrooptical Properties of Carbon-Nanotube-Doped Twisted Nematic Liquid Crystal Cell , 2006 .

[6]  K. Mølhave,et al.  Transmission electron microscopy study of individual carbon nanotube breakdown caused by Joule heating in air. , 2006, Nano letters.

[7]  A. Kosaka,et al.  A Glass Hook Allows Fishing of Hexa‐peri‐hexabenzocoronene Graphitic Nanotubes: Fabrication of a Macroscopic Fiber with Anisotropic Electrical Conduction , 2006 .

[8]  Boris I. Yakobson,et al.  Persistence Length and Nanomechanics of Random Bundles of Nanotubes , 2006 .

[9]  Boris Kozinsky,et al.  Static dielectric properties of carbon nanotubes from first principles. , 2006, Physical review letters.

[10]  R. Thiruvengadathan,et al.  Preparation and characterization of a carbon nanotube-lyotropic liquid crystal composite. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[11]  I. Dierking,et al.  Magnetically steered liquid crystal-nanotube switch , 2005 .

[12]  S. Park,et al.  Electrorheology of Multiwalled Carbon Nanotube/Poly(methyl methacrylate) Nanocomposites , 2005 .

[13]  M. Jhon,et al.  Synthesis and electrorhelogy of multi-walled carbon nanotube/polyaniline nanoparticles , 2005 .

[14]  Polarization of metallic carbon nanotubes from a model that includes both net charges and dipoles , 2005 .

[15]  Myung S. Jhon,et al.  Electrorheological application of polyaniline/multi-walled carbon nanotube composites , 2005 .

[16]  Piero Morales,et al.  Liquid crystal–carbon nanotube dispersions , 2005 .

[17]  J. L. Sebastian,et al.  Interparticle forces in electrorheological fluids: effects of polydispersity and shape , 2004 .

[18]  N. Xu,et al.  Quantum-mechanical investigation of field-emission mechanism of a micrometer-long single-walled carbon nanotube. , 2004, Physical review letters.

[19]  R. Vaia,et al.  Remotely actuated polymer nanocomposites—stress-recovery of carbon-nanotube-filled thermoplastic elastomers , 2004, Nature materials.

[20]  M. Sancho,et al.  Accurate dielectric modelling of shelled particles and cells , 2003 .

[21]  Y. Kawazoe,et al.  Nonlinear Charging and Transport Times in Doped Nanotubes Junctions , 2002, cond-mat/0204609.

[22]  Junfeng Wang,et al.  Improved integral formulations for fast 3-D method-of-momentssolvers , 2001, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[23]  K. G. Ong,et al.  Effect of purification of the electrical conductivity and complex permittivity of multiwall carbon nanotubes , 2001 .

[24]  E. Furst,et al.  Micromechanics of magnetorheological suspensions. , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[25]  Shouqiang Men,et al.  Experimental study of dielectric constant influence on electrorheological effect , 2000 .

[26]  S. Louie,et al.  Erratum: Quantum conductance of carbon nanotubes with defects [Phys. Rev. B54, 2600 (1996)] , 2000 .

[27]  Arokia Nathan,et al.  An integral equation of the second kind for computation of capacitance , 1999, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[28]  B. M. I. van der Zande,et al.  Alignment of rod-shaped gold particles by electric fields , 1999 .

[29]  Jacob K. White,et al.  Capacitance extraction of 3-D conductor systems in dielectric media with high-permittivity ratios , 1999 .

[30]  T. Yamabe,et al.  PI -BAND CONTRIBUTION TO THE OPTICAL PROPERTIES OF CARBON NANOTUBES : EFFECTS OF CHIRALITY , 1998 .

[31]  Jacob K. White,et al.  Second-kind integral formulations of the capacitance problem , 1996, Adv. Comput. Math..

[32]  Charles M. Lieber,et al.  Nanobeam Mechanics: Elasticity, Strength, and Toughness of Nanorods and Nanotubes , 1997 .

[33]  L. Forró,et al.  Evidence of anisotropic metallic behaviour in the optical properties of carbon nanotubes , 1996 .

[34]  Benedict,et al.  Quantum conductance of carbon nanotubes with defects. , 1996, Physical review. B, Condensed matter.

[35]  Benedict,et al.  Static polarizabilities of single-wall carbon nanotubes. , 1995, Physical review. B, Condensed matter.

[36]  J. Brady,et al.  Dynamic simulation of an electrorheological fluid , 1992 .

[37]  Roger T. Bonnecaze,et al.  Yield stresses in electrorheological fluids , 1992 .

[38]  R. Kress Linear Integral Equations , 1989 .

[39]  A. Gast,et al.  A microscopic model of electrorheology , 1988 .

[40]  J. N. Newman Distributions of sources and normal dipoles over a quadrilateral panel , 1986 .

[41]  E. M. Lifshitz,et al.  Electrodynamics of continuous media , 1961 .

[42]  C. T. O'konski,et al.  Electric Properties of Macromolecules. IV. Determination of Electric and Optical Parameters from Saturation of Electric Birefringence in Solutions , 1959 .