Topic 6: Grid and Cluster Computing: Models, Middleware and Architectures

Grid computing is a major research area with strong involvement from both academia and the computing industry. The common vision is that Grid computing represents the culmination of truly general distributed computing across various resources in a ubiquitous, open-ended infrastructure to support a wide range of different application areas. Recently the CoreGrid (http://www.coregrid.net) Executive Committee reached an agreement on the following definition: a Grid is ?a fully distributed, dynamically reconfigurable, scalable and autonomous infrastructure to provide location independent, pervasive, reliable, secure and efficient access to a coordinated set of services encapsulating and virtualizing resources (computing power, storage, instruments, data, etc.) in order to generate knowledge?. Although significant progress has been made in the design and deployment of Grids, many challenges still remain before the goal of a user-friendly, efficient, and reliable grid can be realized. Grid research issues cover many areas of computer science to address the fundamental capabilities and services that are required in a heterogeneous environment, such as adaptability, scalability, reliability and security, and to support applications as diverse as ubiquitous local services, enterprise-scale virtual organizations, and Internet-scale distributed supercomputing.