Effects of pyrochlore content on the phase, structure, and properties of uranium-rich glass ceramics

[1]  Lielin Wang,et al.  Glass-ceramics with internally crystallized pyrochlore for the immobilization of uranium wastes , 2019, Ceramics International.

[2]  Haibin Zhang,et al.  Self-propagating high-temperature synthesis of ZrO2 incorporated Gd2Ti2O7 pyrochlore , 2018, Journal of Advanced Ceramics.

[3]  Yingjie Zhang,et al.  Phase evolution from Ln2Ti2O7 (Ln=Y and Gd) pyrochlores to brannerites in glass with uranium incorporation , 2017 .

[4]  Yingjie Zhang,et al.  Preparation of Y2Ti2O7 pyrochlore glass-ceramics as potential waste forms for actinides: The effects of processing conditions , 2017 .

[5]  Yingjie Zhang,et al.  Development of brannerite glass-ceramics for the immobilization of actinide-rich radioactive wastes , 2017 .

[6]  M. I. Ojovan,et al.  Crystalline materials for actinide immobilisation , 2010 .

[7]  M. I. Ojovan,et al.  Waste Actinide Immobilisation , 2010 .

[8]  Carol M. Jantzen,et al.  Durable Glass for Thousands of Years , 2010 .

[9]  M. Mayes,et al.  Impact of uranyl-calcium-carbonato complexes on uranium(VI) adsorption to synthetic and natural sediments. , 2010, Environmental science & technology.

[10]  M. I. Ojovan,et al.  Immobilisation of radioactive waste in glasses, glass composite materials and ceramics , 2006 .

[11]  G. C. Allen,et al.  Reduction of U(VI) to U(IV) on the surface of magnetite , 2005 .

[12]  A. Boccaccini,et al.  Borosilicate and lead silicate glass matrix composites containing pyrochlore phases for nuclear waste encapsulation , 2004 .

[13]  J. Holloway,et al.  Elastic constants, Vickers hardness, and fracture toughness of fluorrichterite-based glass-ceramics. , 2004, Dental materials : official publication of the Academy of Dental Materials.

[14]  Zhaoming Zhang,et al.  Dissolution of synthetic brannerite in acidic and alkaline fluids , 2003 .

[15]  R C Ewing,et al.  Nuclear waste forms for actinides. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[16]  Yifeng Wang,et al.  Electron energy-loss spectroscopy (EELS) study of oxidation states of Ce and U in pyrochlore and uraninite – natural analogues for Pu- and U-bearing waste forms , 1999 .

[17]  S. Wolf,et al.  Apatite- and monazite-bearing glass-crystal composites for the immobilization of low-level nuclear and hazardous wastes , 1995 .

[18]  D. Wood,et al.  Apatite-mullite glass-ceramics , 1993 .

[19]  Anupam Madhukar,et al.  Local atomic and electronic structure of oxide/GaAs and SiO2/Si interfaces using high-resolution XPS , 1979 .

[20]  W. Lutze,et al.  Development of glass ceramics for the incorporation of fission products , 1976 .

[21]  E. Vance,et al.  Pyrochlore based glass-ceramics for the immobilization of actinide-rich nuclear wastes: From concept to reality , 2013 .

[22]  Gregg J. Lumetta,et al.  Advanced separation techniques for nuclear fuel reprocessing and radioactive waste treatment , 2011 .

[23]  E. Vance,et al.  HIPed Tailored Pyrochlore-Rich Glass-Ceramic Waste Forms for the Immobilization of Nuclear Waste , 2008 .

[24]  William E. Lee,et al.  An Introduction to Nuclear Waste Immobilisation , 2005 .

[25]  E. Buck,et al.  Element Partitioning in a Pyrochlore-Based Ceramic Nuclear Waste form , 2002 .

[26]  N. Baffier,et al.  Development of Zirconolite-based Glass-Ceramics for the Conditioning of Actinides , 2000 .

[27]  P. Hayward,et al.  Development of Sphene-Based Glass Ceramics Tailored for Canadian Waste Disposal Conditions , 1981 .