A computational study of heterogeneous char reactions in a full-scale furnace

Driven by the need for more efficient means of power generation, computational simulation of furnace operation has assumed an increasingly important role. Computational tools make it possible to predict trends in furnace performance characteristics, such carbon burnout, with reasonable accuracy. Char burnout in a furnace occurs primarily by reaction with molecular oxygen in the surrounding gas. Consequently, most models of carbon burnout used in furnace codes only consider the char-O2 reaction. However, char reactions with other gas phase species, such as carbon dioxide and water become important where oxygen concentrations are low. Using a numerical model of a full-scale tangentially fired furnace, this work quantifies the relative importance of these reactions.