Optimal control of the atmospheric reentry of a space shuttle by an homotopy method

This paper deals with the optimal control problem of the atmospheric reentry of a space shuttle with a second-order state constraint on the thermal flux. We solve the problem using the shooting algorithm combined with an homotopy method which automatically determines the structure of the optimal trajectory (composed of one boundary arc and one touch point).

[1]  Emmanuel Trélat,et al.  Optimal Control with State Constraints and the Space Shuttle Re-entry Problem , 2003 .

[2]  E. Allgower,et al.  Introduction to Numerical Continuation Methods , 1987 .

[3]  E. Allgower,et al.  Numerical Continuation Methods , 1990 .

[4]  H. J. Pesch,et al.  Abort landing in windshear: Optimal control problem with third-order state constraint and varied switching structure , 1995 .

[5]  William W. Hager,et al.  The Euler approximation in state constrained optimal control , 2001, Math. Comput..

[6]  Anil V. Rao,et al.  Practical Methods for Optimal Control Using Nonlinear Programming , 1987 .

[7]  A. Hermant Homotopy Algorithm for Optimal Control Problems with a Second-order State Constraint , 2010 .

[8]  G. Launay,et al.  Large-Scale Direct Optimal Control Applied to a Re-Entry Problem , 1998 .

[9]  Christophe Talbot,et al.  An Interior-Point Approach to Trajectory Optimization , 2007 .

[10]  Bernard Bonnard,et al.  UNE APPROCHE G EOM ETRIQUE DU CONTR ^ OLE OPTIMAL DE L'ARC ATMOSPH ERIQUE DE LA NAVETTE SPATIALE , 2002 .

[11]  Emiliano Cristiani,et al.  Initialization of the Shooting Method via the Hamilton-Jacobi-Bellman Approach , 2009, 0910.0521.

[12]  Hans Josef Pesch,et al.  Abort landing in the presence of windshear as a minimax optimal control problem, part 1: Necessary conditions , 1991 .

[13]  H. J. Pesch Real-time computation of feedback controls for constrained optimal control problems. Part 2: A correction method based on multiple shooting , 1989 .

[14]  J. Betts,et al.  Direct transcription solution of optimal control problems with higher order state constraints: theory vs practice , 2007 .

[15]  J. Frédéric Bonnans,et al.  Second-order analysis for optimal control problems with pure state constraints and mixed control-state constraints , 2009 .

[16]  Helmut Maurer,et al.  Sensitivity Analysis for Optimal Control Problems Subject to Higher Order State Constraints , 2001, Ann. Oper. Res..

[17]  Helmut Maurer,et al.  Direct optimization methods for solving a complex state-constrained optimal control problem in microeconomics , 2008, Appl. Math. Comput..

[18]  J. Frédéric Bonnans,et al.  Well-Posedness of the Shooting Algorithm for State Constrained Optimal Control Problems with a Single Constraint and Control , 2007, SIAM J. Control. Optim..

[19]  Emmanuel Trélat,et al.  OPTIMAL CONTROL OF THE ATMOSPHERIC ARC OF A SPACE SHUTTLE AND NUMERICAL SIMULATIONS WITH MULTIPLE-SHOOTING METHOD , 2005 .

[20]  H. Maurer,et al.  SQP-methods for solving optimal control problems with control and state constraints: adjoint variables, sensitivity analysis and real-time control , 2000 .

[21]  J. F. Bonnans,et al.  STABILITY AND SENSITIVITY ANALYSIS FOR OPTIMAL CONTROL PROBLEMS WITH A FIRST-ORDER STATE CONSTRAINT AND APPLICATION TO CONTINUATION METHODS , 2008 .

[22]  H. Robbins,et al.  Junction phenomena for optimal control with state-variable inequality constraints of third order , 1980 .

[23]  A. Dontchev,et al.  On Regularity of Optimal Control , 1995 .