Detecting leftmost maximal periodicities

Periodicities are nonempty strings of the form pmq with m 12 and q a prefix of p. The integer m is called the power of the periodicity, “he length of p (written lpi) is the period length, and the periodicity length is the total length of pmq. This note presents a new algorithm to output a list of occurrences of periodicities within a string. The list does not contain all periodicities within the given string, but it is guaranteed to contain any periodicity which is leftmost and maximal. Informally, a substring of a string is a maximal periodicity provided that it is a periodicity such that neither the character which precedes nor the character which follows the substring can be added without destroying the periodicity. A substring of a string is leftmost provided that there is no previous occurrence of the substring within the given string. For a given string, the list of periodicities produced by the algorihm provides immediate answers to problems such as:

[1]  Maxime Crochemore,et al.  An Optimal Algorithm for Computing the Repetitions in a Word , 1981, Inf. Process. Lett..

[2]  Edward M. McCreight,et al.  A Space-Economical Suffix Tree Construction Algorithm , 1976, JACM.

[3]  David Haussler,et al.  Applications of an Infinite Squarefree CO-CFL , 1985, ICALP.

[4]  Glenn K. Manacher,et al.  A New Linear-Time ``On-Line'' Algorithm for Finding the Smallest Initial Palindrome of a String , 1975, JACM.

[5]  Donald E. Knuth,et al.  Fast Pattern Matching in Strings , 1977, SIAM J. Comput..

[6]  Christophe Reutenauer A New Characterization of the Regular Languages , 1981, ICALP.

[7]  Michael G. Main,et al.  An O(n log n) Algorithm for Finding All Repetitions in a String , 1984, J. Algorithms.

[8]  Arto Salomaa Jewels of formal language theory , 1981 .

[9]  Max Chochemore Linear searching for a square in a word , 1984, Bull. EATCS.

[10]  Karl Winklmann,et al.  An "Interchange Lemma" for Context-Free Languages , 1985, SIAM J. Comput..

[11]  Franco P. Preparata,et al.  Optimal Off-Line Detection of Repetitions in a String , 1983, Theor. Comput. Sci..

[12]  Jean Berstel Every Iterated Morphism Yields a co-CFL , 1986, Inf. Process. Lett..

[13]  David Haussler,et al.  Conditions Enforcing Regularity of Context-Free Languages , 1982, ICALP.

[14]  A. O. Slisenko,et al.  Detection of periodicities and string-matching in real time , 1983 .

[15]  Jonathan Goldstine,et al.  Bounded AFLs , 1976, J. Comput. Syst. Sci..

[16]  Zvi Galil,et al.  A Linear-Time On-Line Recognition Algorithm for ``Palstar'' , 1978, JACM.

[17]  Dwight R. Bean,et al.  Avoidable patterns in strings of symbols , 1979 .

[18]  J. Beauquier,et al.  VERY SMALL FAMILIES OF ALGEBRAIC NONRATIONAL LANGUAGES , 1980 .

[19]  Richard J. Lorentz,et al.  Linear Time Recognition of Squarefree Strings , 1985 .

[20]  Jean Berstel,et al.  Sur les mots sans carré définis par un morphisme , 1979, ICALP.