METHOD Open Access

[1]  Mark Gerstein,et al.  RSEQtools: a modular framework to analyze RNA-Seq data using compact, anonymized data summaries , 2010, Bioinform..

[2]  Francesca Demichelis,et al.  Discovery of non-ETS gene fusions in human prostate cancer using next-generation RNA sequencing. , 2011, Genome research.

[3]  Serban Nacu,et al.  Fast and SNP-tolerant detection of complex variants and splicing in short reads , 2010, Bioinform..

[4]  M. Gerstein,et al.  Comparison and calibration of transcriptome data from RNA-Seq and tiling arrays , 2010, BMC Genomics.

[5]  L. Feuk,et al.  Global and unbiased detection of splice junctions from RNA-seq data , 2010, Genome Biology.

[6]  Eric T. Wang,et al.  An Abundance of Ubiquitously Expressed Genes Revealed by Tissue Transcriptome Sequence Data , 2009, PLoS Comput. Biol..

[7]  T. Gingeras Implications of chimaeric non-co-linear transcripts , 2009, Nature.

[8]  Steven J. M. Jones,et al.  Circos: an information aesthetic for comparative genomics. , 2009, Genome research.

[9]  M. Rubin,et al.  ETS gene fusions in prostate cancer: from discovery to daily clinical practice. , 2009, European urology.

[10]  M. Gerstein,et al.  N-myc downstream regulated gene 1 (NDRG1) is fused to ERG in prostate cancer. , 2009, Neoplasia.

[11]  S. Luo,et al.  Chimeric transcript discovery by paired-end transcriptome sequencing , 2009, Proceedings of the National Academy of Sciences.

[12]  M. Gerstein,et al.  Unlocking the secrets of the genome , 2009, Nature.

[13]  P. Green,et al.  Massively parallel sequencing of the polyadenylated transcriptome of C. elegans. , 2009, Genome research.

[14]  M. Rubin,et al.  SLC45A3-ELK4 is a novel and frequent erythroblast transformation-specific fusion transcript in prostate cancer. , 2009, Cancer research.

[15]  Brian J. Stevenson,et al.  Transcriptome-guided characterization of genomic rearrangements in a breast cancer cell line , 2009, Proceedings of the National Academy of Sciences.

[16]  Lee T. Sam,et al.  Transcriptome Sequencing to Detect Gene Fusions in Cancer , 2009, Nature.

[17]  M. Gerstein,et al.  RNA-Seq: a revolutionary tool for transcriptomics , 2009, Nature Reviews Genetics.

[18]  Christopher J. Lee,et al.  A transcriptional sketch of a primary human breast cancer by 454 deep sequencing , 2009, BMC Genomics.

[19]  Cole Trapnell,et al.  Ultrafast and memory-efficient alignment of short DNA sequences to the human genome , 2009, Genome Biology.

[20]  M. Gerstein,et al.  PEMer: a computational framework with simulation-based error models for inferring genomic structural variants from massive paired-end sequencing data , 2009, Genome Biology.

[21]  Richard Durbin,et al.  A large genome center's improvements to the Illumina sequencing system , 2008, Nature Methods.

[22]  Sherif Abou Elela,et al.  Identification of alternative splicing markers for breast cancer. , 2008, Cancer research.

[23]  B. Frey,et al.  Deep surveying of alternative splicing complexity in the human transcriptome by high-throughput sequencing , 2008, Nature Genetics.

[24]  Nancy F. Hansen,et al.  Accurate Whole Human Genome Sequencing using Reversible Terminator Chemistry , 2008, Nature.

[25]  M. Ittmann,et al.  Pleiotropic biological activities of alternatively spliced TMPRSS2/ERG fusion gene transcripts. , 2008, Cancer research.

[26]  Eric T. Wang,et al.  Alternative Isoform Regulation in Human Tissue Transcriptomes , 2008, Nature.

[27]  J. Sklar,et al.  A Neoplastic Gene Fusion Mimics Trans-Splicing of RNAs in Normal Human Cells , 2008, Science.

[28]  Marcel H. Schulz,et al.  A Global View of Gene Activity and Alternative Splicing by Deep Sequencing of the Human Transcriptome , 2008, Science.

[29]  B. Williams,et al.  Mapping and quantifying mammalian transcriptomes by RNA-Seq , 2008, Nature Methods.

[30]  M. Gerstein,et al.  The Transcriptional Landscape of the Yeast Genome Defined by RNA Sequencing , 2008, Science.

[31]  Antony V. Cox,et al.  Identification of somatically acquired rearrangements in cancer using genome-wide massively parallel paired-end sequencing , 2008, Nature Genetics.

[32]  Ali Bashir,et al.  Evaluation of Paired-End Sequencing Strategies for Detection of Genome Rearrangements in Cancer , 2008, PLoS Comput. Biol..

[33]  Tao Liu,et al.  TreeFam: 2008 Update , 2007, Nucleic Acids Res..

[34]  R. Eeles,et al.  Detection of TMPRSS2-ERG translocations in human prostate cancer by expression profiling using GeneChip Human Exon 1.0 ST arrays. , 2008, The Journal of molecular diagnostics : JMD.

[35]  A. Chinnaiyan,et al.  Recurrent gene fusions in prostate cancer , 2008, Nature Reviews Cancer.

[36]  Jianfeng Xu,et al.  Multiple genomic alterations on 21q22 predict various TMPRSS2/ERG fusion transcripts in human prostate cancers , 2007, Genes, chromosomes & cancer.

[37]  Philip M. Kim,et al.  Paired-End Mapping Reveals Extensive Structural Variation in the Human Genome , 2007, Science.

[38]  H. Aburatani,et al.  Identification of the transforming EML4–ALK fusion gene in non-small-cell lung cancer , 2007, Nature.

[39]  William Stafford Noble,et al.  Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project , 2007, Nature.

[40]  D. Altshuler,et al.  Completing the map of human genetic variation , 2007, Nature.

[41]  R. Eeles,et al.  Diversity of TMPRSS2-ERG fusion transcripts in the human prostate , 2007, Oncogene.

[42]  B. Johansson,et al.  The impact of translocations and gene fusions on cancer causation , 2007, Nature Reviews Cancer.

[43]  Michael Ittmann,et al.  Expression of variant TMPRSS2/ERG fusion messenger RNAs is associated with aggressive prostate cancer. , 2006, Cancer research.

[44]  David Haussler,et al.  The UCSC Known Genes , 2006, Bioinform..

[45]  Jean L. Chang,et al.  Human chromosome 11 DNA sequence and analysis including novel gene identification , 2006, Nature.

[46]  Tao Liu,et al.  TreeFam: a curated database of phylogenetic trees of animal gene families , 2005, Nucleic Acids Res..

[47]  J. Tchinda,et al.  Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer. , 2006, Science.

[48]  E. Eichler,et al.  Fine-scale structural variation of the human genome , 2005, Nature Genetics.

[49]  B. Johansson,et al.  Fusion genes and rearranged genes as a linear function of chromosome aberrations in cancer , 2004, Nature Genetics.

[50]  K. Chin,et al.  End-sequence profiling: Sequence-based analysis of aberrant genomes , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[51]  Tom H. Pringle,et al.  The human genome browser at UCSC. , 2002, Genome research.

[52]  W. J. Kent,et al.  BLAT--the BLAST-like alignment tool. , 2002, Genome research.

[53]  Philip Lijnzaad,et al.  The Ensembl genome database project , 2002, Nucleic Acids Res..

[54]  J. Jurka Repbase update: a database and an electronic journal of repetitive elements. , 2000, Trends in genetics : TIG.

[55]  F. Mitelman,et al.  Recurrent chromosome aberrations in cancer. , 2000, Mutation research.