Placing and shaping liposomes with reconfigurable DNA nanocages.

[1]  Dirk van Swaay,et al.  Microfluidic methods for forming liposomes. , 2013, Lab on a chip.

[2]  Felix Ritort,et al.  Elastic properties and secondary structure formation of single-stranded DNA at monovalent and divalent salt conditions , 2013, Nucleic acids research.

[3]  Hai-Jun Su,et al.  Programmable motion of DNA origami mechanisms , 2015, Proceedings of the National Academy of Sciences.

[4]  P. Bassereau,et al.  A minimal system allowing tubulation with molecular motors pulling on giant liposomes , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[5]  Q. Zhong,et al.  Autophagosome targeting and membrane curvature sensing by Barkor/Atg14(L) , 2011, Proceedings of the National Academy of Sciences.

[6]  References , 1977 .

[7]  Harvey T. McMahon,et al.  Membrane curvature and mechanisms of dynamic cell membrane remodelling , 2005, Nature.

[8]  J. Rothman,et al.  Low energy cost for optimal speed and control of membrane fusion , 2017, Proceedings of the National Academy of Sciences.

[9]  Harvey T. McMahon,et al.  Membrane Curvature in Synaptic Vesicle Fusion and Beyond , 2010, Cell.

[10]  D. Irvine,et al.  Bio-inspired, bioengineered and biomimetic drug delivery carriers , 2011, Nature Reviews Drug Discovery.

[11]  G. Feigenson Phase boundaries and biological membranes. , 2007, Annual review of biophysics and biomolecular structure.

[12]  J. Bewersdorf,et al.  Lipidation of the LC3/GABARAP family of autophagy proteins relies upon a membrane curvature-sensing domain in Atg3 , 2014, Nature Cell Biology.

[13]  J R Kremer,et al.  Computer visualization of three-dimensional image data using IMOD. , 1996, Journal of structural biology.

[14]  Shawn M. Douglas,et al.  Folding DNA into Twisted and Curved Nanoscale Shapes , 2009, Science.

[15]  D. Bong,et al.  Controlled fusion of synthetic lipid membrane vesicles. , 2013, Accounts of chemical research.

[16]  Jing Wang,et al.  Self-assembly of size-controlled liposomes on DNA nanotemplates , 2016, Nature chemistry.

[17]  Pietro De Camilli,et al.  Dynamin, a membrane-remodelling GTPase , 2012, Nature Reviews Molecular Cell Biology.

[18]  Yong Zhou,et al.  Lipid Nanotubes: A Unique Template To Create Diverse One-Dimensional Nanostructures† , 2008 .

[19]  Aurélien Roux,et al.  Mechanics of dynamin-mediated membrane fission. , 2013, Annual review of biophysics.

[20]  Wolfgang Pfeifer,et al.  From Nano to Macro through Hierarchical Self‐Assembly: The DNA Paradigm , 2016, Chembiochem : a European journal of chemical biology.

[21]  Hosna Jabbari,et al.  Computational Approaches to Nucleic Acid Origami. , 2015, ACS combinatorial science.

[22]  N. Seeman,et al.  Programmable materials and the nature of the DNA bond , 2015, Science.

[23]  V. John,et al.  Undulating tubular liposomes through incorporation of a synthetic skin ceramide into phospholipid bilayers. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[24]  Chenxiang Lin,et al.  Knitting Complex Weaves with Dna Origami This Review Comes from a Themed Issue on Nucleic Acids Edited Dna and the Biosynthetic Advantage Single-layer Dna Origami Multi-layer Dna Origami Scaling to Greater Complexity Conclusions and Future Outlook , 2022 .

[25]  V. John,et al.  Highly aspherical silica nanoshells by templating tubular liposomes. , 2009, Soft matter.

[26]  C. O’Sullivan,et al.  Curvature-tuned preparation of nanoliposomes. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[27]  Jing Wang,et al.  A Programmable DNA Origami Platform to Organize SNAREs for Membrane Fusion. , 2016, Journal of the American Chemical Society.

[28]  Shawn M. Douglas,et al.  Self-assembly of DNA into nanoscale three-dimensional shapes , 2009, Nature.

[29]  Hao Yan,et al.  Cuboid Vesicles Formed by Frame-Guided Assembly on DNA Origami Scaffolds. , 2017, Angewandte Chemie.

[30]  Bensimon,et al.  Experimental and theoretical study of toroidal vesicles. , 1992, Physical review letters.

[31]  William M. Shih,et al.  Virus-Inspired Membrane Encapsulation of DNA Nanostructures To Achieve In Vivo Stability , 2014, ACS nano.

[32]  Alba Diz-Muñoz,et al.  Use the force: membrane tension as an organizer of cell shape and motility. , 2013, Trends in cell biology.

[33]  Eleanor Stride,et al.  Liposome production by microfluidics: potential and limiting factors , 2016, Scientific Reports.

[34]  Aldo Jesorka,et al.  Generation of phospholipid vesicle-nanotube networks and transport of molecules therein , 2011, Nature Protocols.

[35]  Chenxiang Lin,et al.  Purification of DNA-origami nanostructures by rate-zonal centrifugation , 2012, Nucleic acids research.

[36]  P. Beales,et al.  Nature's lessons in design: nanomachines to scaffold, remodel and shape membrane compartments. , 2015, Physical chemistry chemical physics : PCCP.

[37]  S. Howorka,et al.  Changing of the guard , 2016, Science.

[38]  R. Schubert Liposome preparation by detergent removal. , 2003, Methods in enzymology.

[39]  Adam H. Marblestone,et al.  Rapid prototyping of 3D DNA-origami shapes with caDNAno , 2009, Nucleic acids research.

[40]  G. Melikyan,et al.  The Energetics of Membrane Fusion from Binding, through Hemifusion, Pore Formation, and Pore Enlargement , 2004, The Journal of Membrane Biology.

[41]  H. Dietz,et al.  Dynamic DNA devices and assemblies formed by shape-complementary, non–base pairing 3D components , 2015, Science.

[42]  J. Zimmerberg,et al.  Lipid polymorphisms and membrane shape. , 2011, Cold Spring Harbor perspectives in biology.

[43]  Paramjit S. Arora,et al.  Amyloid fibrils nucleated and organized by DNA origami constructions , 2014, Nature nanotechnology.

[44]  S. Emr,et al.  Molecular mechanisms of the membrane sculpting ESCRT pathway. , 2013, Cold Spring Harbor perspectives in biology.

[45]  Masayuki Endo,et al.  Photo-cross-linking-assisted thermal stability of DNA origami structures and its application for higher-temperature self-assembly. , 2011, Journal of the American Chemical Society.

[46]  A. Kros,et al.  Model systems for membrane fusion. , 2011, Chemical Society reviews.

[47]  G. Seelig,et al.  Dynamic DNA nanotechnology using strand-displacement reactions. , 2011, Nature chemistry.

[48]  Yan Liu,et al.  DNA-Templated Self-Assembly of Protein Arrays and Highly Conductive Nanowires , 2003, Science.

[49]  K. Ewert,et al.  Block liposomes from curvature-stabilizing lipids: connected nanotubes, -rods, or -spheres. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[50]  W. Sundquist,et al.  Membrane fission reactions of the mammalian ESCRT pathway. , 2013, Annual review of biochemistry.

[51]  Peng Yin,et al.  Casting inorganic structures with DNA molds , 2014, Science.

[52]  Conrad Steenberg,et al.  NUPACK: Analysis and design of nucleic acid systems , 2011, J. Comput. Chem..

[53]  C. Dekker,et al.  Nanofabricated structures and microfluidic devices for bacteria: from techniques to biology. , 2016, Chemical Society reviews.