Projection-based particle methods-latest achievements and future perspectives †

The paper presents a concise review on the latest achievements made in the context of projection-based particle methods, including MPS and Incompressible SPH (ISPH) methods. The latest achievements corresponding to stability, accuracy, boundary conditions and energy conservation enhancements as well as advancements related to simulations of multiphase flows, fluid-structure interactions and surface tension are reviewed. The future perspectives for enhancement of applicability and reliability of projection-based particle methods are also highlighted.

[1]  Seiichi Koshizuka,et al.  On the consistency and convergence of particle-based meshfree discretization schemes for the Laplace operator , 2017 .

[2]  Benedict D. Rogers,et al.  Variable resolution for SPH in three dimensions: Towards optimal splitting and coalescing for dynamic adaptivity , 2016 .

[3]  Hitoshi Gotoh,et al.  A Multiphase Compressible-Incompressible Particle Method for Water Slamming , 2016 .

[4]  Moubin Liu,et al.  Particle Methods for Multi-Scale and Multi-Physics , 2016 .

[5]  J. Sousa,et al.  An innovative open boundary treatment for incompressible SPH , 2016 .

[6]  D. Violeau,et al.  Smoothed particle hydrodynamics (SPH) for free-surface flows: past, present and future , 2016 .

[7]  E. Balaras,et al.  Spray Formation during the Impact of a Flat Plate on a Water Surface , 2015, 1804.01068.

[8]  Damien Violeau,et al.  Buoyancy modelling with incompressible SPH for laminar and turbulent flows , 2015 .

[9]  A. Colagrossi,et al.  Energy balance in the δ-SPH scheme , 2015 .

[10]  A. Colagrossi,et al.  Prediction of energy losses in water impacts using incompressible and weakly compressible models , 2015 .

[11]  Makoto Sueyoshi,et al.  Free surface flow impacting on an elastic structure: Experiment versus numerical simulation , 2015 .

[12]  Abbas Khayyer,et al.  Space potential particles to enhance the stability of projection-based particle methods , 2015 .

[13]  Jong-Chun Park,et al.  An Enhanced Fully Lagrangian Coupled MPS-based Solver for Fluid-Structure Interactions , 2015 .

[14]  Benedict D. Rogers,et al.  Numerical predictions of water–air wave slam using incompressible–compressible smoothed particle hydrodynamics , 2015 .

[15]  Ling Qian,et al.  A compressible multiphase flow model for violent aerated wave impact problems , 2014, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[16]  Gaurav Tomar,et al.  An improved free surface modeling for incompressible SPH , 2014 .

[17]  Hitoshi Gotoh,et al.  Development of a fully Lagrangian MPS-based coupled method for simulation of fluid-structure interaction problems , 2014 .

[18]  Seiichi Koshizuka,et al.  Least squares moving particle semi-implicit method , 2014, Computational Particle Mechanics.

[19]  Taro Arikawa,et al.  On enhancement of Incompressible SPH method for simulation of violent sloshing flows , 2014 .

[20]  Christophe Kassiotis,et al.  Unified semi-analytical wall boundary conditions applied to 2-D incompressible SPH , 2014, J. Comput. Phys..

[21]  Sung-Chul Hwang,et al.  Two-Dimensional Particle Simulation for Behaviors of Floating Body near Quaywall during Tsunami , 2014 .

[22]  Abbas Khayyer,et al.  A New Surface Tension Model for Particle Methods with Enhanced Splash Computation , 2014 .

[23]  Abbas Khayyer,et al.  A short note on Dynamic Stabilization of Moving Particle Semi-implicit method , 2013 .

[24]  Hitoshi Gotoh,et al.  Enhancement of performance and stability of MPS mesh-free particle method for multiphase flows characterized by high density ratios , 2013, J. Comput. Phys..

[25]  Benedict D. Rogers,et al.  Investigation of wall bounded flows using SPH and the unified semi-analytical wall boundary conditions , 2013, Comput. Phys. Commun..

[26]  Jose L. Cercos-Pita,et al.  On the consistency of MPS , 2013, Comput. Phys. Commun..

[27]  Dominique Laurence,et al.  Unified semi‐analytical wall boundary conditions for inviscid, laminar or turbulent flows in the meshless SPH method , 2013 .

[28]  Xin Liu,et al.  An improved incompressible SPH model for simulation of wave–structure interaction , 2013 .

[29]  Nikolaus A. Adams,et al.  A generalized wall boundary condition for smoothed particle hydrodynamics , 2012, J. Comput. Phys..

[30]  Damien Violeau,et al.  Fluid Mechanics and the SPH Method: Theory and Applications , 2012 .

[31]  S. J. Lind,et al.  Incompressible smoothed particle hydrodynamics for free-surface flows: A generalised diffusion-based algorithm for stability and validations for impulsive flows and propagating waves , 2012, J. Comput. Phys..

[32]  James J. Feng,et al.  Pressure boundary conditions for computing incompressible flows with SPH , 2011, J. Comput. Phys..

[33]  Matteo Antuono,et al.  Theoretical Analysis of the No-Slip Boundary Condition Enforcement in SPH Methods , 2011 .

[34]  Hitoshi Gotoh,et al.  Enhancement of stability and accuracy of the moving particle semi-implicit method , 2011, J. Comput. Phys..

[35]  Seiichi Koshizuka,et al.  Improvement of stability in moving particle semi‐implicit method , 2011 .

[36]  Seiichi Koshizuka,et al.  Current Achievements and Future Perspectives on Particle Simulation Technologies for Fluid Dynamics and Heat Transfer , 2011 .

[37]  Roberto Guandalini,et al.  SPH Modeling of Solid Boundaries Through a Semi-Analytic Approach , 2011 .

[38]  P. M. Guilcher,et al.  Simulations of Hydro-Elastic Impacts Using a Parallel SPH Model , 2010 .

[39]  H. Ichikawa,et al.  Smooth particle approach for surface tension calculation in moving particle semi-implicit method , 2010 .

[40]  Guirong Liu,et al.  Smoothed Particle Hydrodynamics (SPH): an Overview and Recent Developments , 2010 .

[41]  Abbas Khayyer,et al.  A higher order Laplacian model for enhancement and stabilization of pressure calculation by the MPS method , 2010 .

[42]  Mihai Basa,et al.  Permeable and non‐reflecting boundary conditions in SPH , 2009 .

[43]  Krish Thiagarajan,et al.  An SPH projection method for simulating fluid-hypoelastic structure interaction , 2009 .

[44]  Abbas Khayyer,et al.  Modified Moving Particle Semi-implicit methods for the prediction of 2D wave impact pressure , 2009 .

[45]  Juntao Zhou,et al.  MLPG_R Method for Numerical Simulation of 2D Breaking Waves , 2009 .

[46]  Hitoshi Gotoh,et al.  ENHANCED PREDICTIONS OF WAVE IMPACT PRESSURE BY IMPROVED INCOMPRESSIBLE SPH METHODS , 2009 .

[47]  Bertrand Alessandrini,et al.  An improved SPH method: Towards higher order convergence , 2007, J. Comput. Phys..

[48]  Seiichi Koshizuka,et al.  Fluid-shell structure interaction analysis by coupled particle and finite element method , 2007 .

[49]  Hitoshi Gotoh,et al.  Key issues in the particle method for computation of wave breaking , 2006 .

[50]  Olav F. Rognebakke,et al.  Experimental approaches for determining sloshing loads in LNG tanks. Discussion , 2005 .

[51]  Yves-Marie Scolan,et al.  Hydroelastic behaviour of a conical shell impacting on a quiescent-free surface of an incompressible liquid , 2004 .

[52]  S. Shao,et al.  INCOMPRESSIBLE SPH METHOD FOR SIMULATING NEWTONIAN AND NON-NEWTONIAN FLOWS WITH A FREE SURFACE , 2003 .

[53]  Yoshiaki Oka,et al.  Numerical Analysis of Droplet Breakup Behavior using Particle Method , 2001 .

[54]  L. Leng Splash formation by spherical drops , 2001, Journal of Fluid Mechanics.

[55]  J. Morris Simulating surface tension with smoothed particle hydrodynamics , 2000 .

[56]  S. Cummins,et al.  An SPH Projection Method , 1999 .

[57]  W. G. Szymczak,et al.  Computations of violent surface motions: comparisons with theory and experiment , 1997, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[58]  Ming‐Chung Lin,et al.  Simultaneous measurements of water impact on a two-dimensional body , 1997 .

[59]  S. Koshizuka,et al.  Moving-Particle Semi-Implicit Method for Fragmentation of Incompressible Fluid , 1996 .

[60]  W. Szymczak Energy losses in non-classical free surface flows , 1994 .

[61]  J. Brackbill,et al.  A continuum method for modeling surface tension , 1992 .