Extremal problems for geometric probabilities involving convex bodies

The theory of geometric probabilities is concerned with randomly generated geometric objects. The aim is to compute probabilities of certain geometric events or distributions of random variables defined in a geometric way. Very often the computation even of simple expectations is too difficult, and one has to be satisfied with establishing estimates and, if possible, sharp inequalities. In geometric probabilities, convex sets play a prominent role, since often the convexity assumptions simplify the situation considerably. Extremal problems for geometric probabilities involving convex bodies can sometimes be attacked successfully by using suitable integral-geometric transformations and then applying classical inequalities from the geometry of convex bodies, or known methods for obtaining such inequalities. Examples of such results are the topic of this paper.

[1]  C. Buchta,et al.  Zufällige Polyeder - Eine Obersicht , 1985 .

[2]  G. R. Hall Acute triangles in the n-ball , 1982, Journal of Applied Probability.

[3]  F. Affentranger Pairs of non-intersecting random flats , 1988 .

[4]  R. Schneider,et al.  CHAPTER 5.1 – Integral Geometry , 1993 .

[5]  L. Santaló On the Measure of Line Segments Entirely Contained in A Convex Body , 1986 .

[6]  Gewichtete Volumsmittelwerte von Simplices, welche zufällig in einem konvexen Körper des ℝ gewählt werden , 1977 .

[7]  R. E. Miles ISOTROPIC RANDOM SIMPLICES , 1971 .

[8]  Christian Buchta,et al.  Random polytopes in a convex polytope, independence of shape, and concentration of vertices , 1993 .

[9]  Richard E. Pfiefer,et al.  The Historical Development of J. J. Sylvester's Four Point Problem , 1989 .

[10]  Rolf Schneider,et al.  Random approximation of convex sets * , 1988 .

[11]  Fernando Affentranger Aproximación aleatoria de cuerpos convexos , 1992 .

[12]  L. Santaló Integral geometry and geometric probability , 1976 .

[13]  INEQUALITIES FOR RANDOM FLATS MEETING A CONVEX BODY , 1985 .

[14]  C. Thomas Extremum properties of the intersection densities of stationary poisson hyperplane processes , 1984 .

[15]  Wolfgang Weil,et al.  CHAPTER 5.2 – Stochastic Geometry , 1993 .

[16]  H. Groemer,et al.  On the mean value of the volume of a random polytope in a convex set , 1974 .

[17]  Fernando Affentranger,et al.  Random spheres in a convex body , 1990 .

[18]  R. E. Miles Poisson flats in Euclidean spaces Part I: A finite number of random uniform flats , 1969, Advances in Applied Probability.

[19]  I. Bárány Random polytopes in smooth convex bodies , 1992 .

[20]  Einschachtelung konvexer Körper , 1975 .

[21]  Heinrich W. E. Jung Ueber die kleinste Kugel, die eine räumliche Figur einschliesst. , 1901 .

[22]  J. G. Wendel A Problem in Geometric Probability. , 1962 .

[23]  David G. Larman,et al.  Volumes of a Random Polytope in a Convex Set , 1990, Applied Geometry And Discrete Mathematics.

[24]  Random triangles in convex regions , 1983 .

[25]  H. Groemer,et al.  On some mean values associated with a randomly selected simplex in a convex set. , 1973 .

[26]  R. Schneider Convex Bodies: The Brunn–Minkowski Theory: Minkowski addition , 1993 .

[27]  H. Groemer On the average size of polytopes in a convex set , 1982 .

[28]  Maximum and minimum sets for some geometric mean values , 1990 .

[29]  A. Giannopoulos On the mean value of the area of a random polygon in a plane convex body , 1992 .

[30]  Rolf Schneider,et al.  Random hyperplanes meeting a convex body , 1982 .