A precipitation hardening model for Al-Cu-Cd alloys

[1]  A. Prosviryakov,et al.  Strengthening of mechanically alloyed Al-based alloy with high Zr contents , 2018 .

[2]  T. Dorin,et al.  Effect of Sc and Zr additions on the microstructure/strength of Al-Cu binary alloys , 2017 .

[3]  Wenguang Wang,et al.  Effect of Precipitation During Quenching on the Prediction of the Mechanical Properties of Al-5 Pct Cu Alloy After T6 Treatment , 2017, Metallurgical and Materials Transactions A.

[4]  Yun-lai Deng,et al.  A Precipitate-Strengthening Model Based on Crystallographic Anisotropy, Stress-Induced Orientation, and Dislocation of Stress-Aged Al-Cu-Mg Single Crystals , 2017, Metallurgical and Materials Transactions A.

[5]  S. Kourkoulis,et al.  Effect of ageing on precipitation kinetics, tensile and work hardening behavior of Al-Cu-Mg (2024) alloy , 2017 .

[6]  Baicheng Liu,et al.  Modeling the precipitation kinetics and tensile properties in Al-7Si-Mg cast aluminum alloys , 2017 .

[7]  G. Guo,et al.  Temperature-dependent constitutive behavior with consideration of microstructure evolution for as-quenched Al-Cu-Mn alloy , 2016 .

[8]  L. Levine,et al.  In Situ Structural Characterization of Ageing Kinetics in Aluminum Alloy 2024 across Angstrom-to-Micrometer Length Scales. , 2016, Acta materialia.

[9]  S. Ringer,et al.  Precipitation processes in Al-Cu-Mg-Sn and Al-Cu-Mg-Sn-Ag , 2016 .

[10]  Bin Wang,et al.  Effect of natural ageing and pre-straining on the hardening behaviour and microstructural response during artificial ageing of an Al–Mg–Si–Cu alloy , 2016 .

[11]  Hongwei Liu,et al.  Quantitative study of nanoscale precipitates in Al–Zn–Mg–Cu alloys with different chemical compositions , 2015 .

[12]  Q. Hao,et al.  Dual characteristic of trace rare earth elements in a commercial casting Al–Cu–X alloy , 2015, Rare Metals.

[13]  D. Seidman,et al.  Comparison between dislocation dynamics model predictions and experiments in precipitation-strengthened Al–Li–Sc alloys , 2014 .

[14]  T. Dorin,et al.  The influence of precipitation on plastic deformation of Al-Cu-Li alloys , 2013 .

[15]  J. Sietsma,et al.  An Age-Hardening Model for Al-Mg-Si Alloys Considering Needle-Shaped Precipitates , 2012, Metallurgical and Materials Transactions A.

[16]  E. Sjölander,et al.  Modelling yield strength of heat treated Al–Si–Mg casting alloys , 2011 .

[17]  M. Starink,et al.  A Model for Precipitation Kinetics and Strengthening in Al-Cu-Mg Alloys , 2008 .

[18]  C. Wolverton Solute–vacancy binding in aluminum , 2007 .

[19]  H. Fjaer,et al.  Modelling of the microstructure and strength evolution in Al–Mg–Si alloys during multistage thermal processing , 2004 .

[20]  Y. Nagai,et al.  Vacancy-Solute Binding Energies in Aluminum by Positron Annihilation , 2004 .

[21]  D. Lloyd,et al.  Modeling of precipitation hardening for the naturally aged Al-Mg-Si-Cu alloy AA6111 , 2003 .

[22]  D. Lloyd,et al.  A yield strength model for the Al-Mg-Si-Cu alloy AA6111 , 2003 .

[23]  Xiangdong Ding,et al.  Modeling the strengthening response to aging process of heat-treatable aluminum alloys containing plate/disc- or rod/needle-shaped precipitates , 2003 .

[24]  J. Silcock,et al.  Comments on a comparison of early and recent work on the effect of trace additions of Cd, In, or Sn on nucleation and growth of θ′ in Al–Cu alloys , 2002 .

[25]  Hugh Shercliff,et al.  Microstructural modelling in metals processing , 2002 .

[26]  Øystein Grong,et al.  Modelling of the age hardening behaviour of Al–Mg–Si alloys , 2001 .

[27]  A. Zhu,et al.  Strengthening effect of unshearable particles of finite size: a computer experimental study , 1999 .

[28]  A. Deschamps,et al.  Influence of predeformation and agEing of an Al–Zn–Mg alloy—II. Modeling of precipitation kinetics and yield stress , 1998 .

[29]  S. Ringer,et al.  The effect of trace additions of sn on precipitation in Al-Cu alloys: An atom probe field ion microscopy study , 1995 .

[30]  A. Ardell,et al.  Precipitation hardening , 1985 .

[31]  R. Doherty,et al.  Influence of interfacial properties on the kinetics of precipitation and precipitate coarsening in aluminium-silver alloys , 1979 .

[32]  C. Laird,et al.  Effect of trace additions Cd, In and Sn on the interfacial structure and kinetics of growth of θ′ plates in AlCu alloy , 1974 .

[33]  幹宏 菅野,et al.  Al-Cu-Cd合金における低温時効遅滞の機構 , 1972 .

[34]  J. D. Boyd,et al.  The coarsening behaviour of θ″ and θ′ precipitates in two Al-Cu alloys , 1971 .

[35]  B. Noble Theta-prime precipitation in aluminium-copper-cadmium alloys , 1968 .

[36]  J. Nuyten Quenched structures and precipitation in Al-Cu alloys with and without traceadditions of Cd , 1967 .

[37]  F. Seitz,et al.  Effects of Dislocations on Mobilities in Semiconductors , 1952 .

[38]  C. Zener Theory of Strain Interaction of Solute Atoms , 1948 .