Exponential H∞ filtering for switched linear systems with interval time‐varying delay
暂无分享,去创建一个
[1] R. Decarlo,et al. Construction of piecewise Lyapunov functions for stabilizing switched systems , 1994, Proceedings of 1994 33rd IEEE Conference on Decision and Control.
[2] A. Morse. Supervisory control of families of linear set-point controllers Part I. Exact matching , 1996, IEEE Trans. Autom. Control..
[3] M. Branicky. Multiple Lyapunov functions and other analysis tools for switched and hybrid systems , 1998, IEEE Trans. Autom. Control..
[4] A. Morse,et al. Basic problems in stability and design of switched systems , 1999 .
[5] Konrad Reif,et al. The extended Kalman filter as an exponential observer for nonlinear systems , 1999, IEEE Trans. Signal Process..
[6] A. Morse,et al. Stability of switched systems with average dwell-time , 1999, Proceedings of the 38th IEEE Conference on Decision and Control (Cat. No.99CH36304).
[7] Peng Shi,et al. Control of Markovian jump discrete-time systems with norm bounded uncertainty and unknown delay , 1999, IEEE Trans. Autom. Control..
[8] R. Decarlo,et al. Perspectives and results on the stability and stabilizability of hybrid systems , 2000, Proceedings of the IEEE.
[9] Panos J. Antsaklis,et al. Special issue on hybrid systems: theory and applications a brief introduction to the theory and applications of hybrid systems , 2000, Proc. IEEE.
[10] R. Horowitz,et al. Control design of an automated highway system , 2000, Proceedings of the IEEE.
[11] João Pedro Hespanha,et al. Switching between stabilizing controllers , 2002, Autom..
[12] Bruce A. Francis,et al. Stabilizing a linear system by switching control with dwell time , 2002, IEEE Trans. Autom. Control..
[13] Jamal Daafouz,et al. Stability analysis and control synthesis for switched systems: a switched Lyapunov function approach , 2002, IEEE Trans. Autom. Control..
[14] R.W. De Doncker,et al. Solid-state circuit breakers and current limiters for medium-voltage systems having distributed power systems , 2004, IEEE Transactions on Power Electronics.
[15] Dong Kyoo Kim,et al. Output-feedback I control of systems over communication networks using a deterministic switching system approach , 2004, Autom..
[16] Shengyuan Xu,et al. Exponential H∞ filter design for uncertain Takagi-Sugeno fuzzy systems with time delay , 2004, Eng. Appl. Artif. Intell..
[17] Hai Lin,et al. Stability and persistent disturbance attenuation properties for a class of networked control systems: switched system approach , 2005 .
[18] Shuzhi Sam Ge,et al. Switched Linear Systems , 2005 .
[19] Bin Jiang,et al. Robust l2 - l∞ Control for Uncertain Discrete-Time Switched Systems with Delays , 2006 .
[20] Xinzhi Liu,et al. Stability of a class of linear switching systems with time delay , 2006, IEEE Transactions on Circuits and Systems I: Regular Papers.
[21] Jun Zhao,et al. Stability and L2-gain analysis for switched delay systems: A delay-dependent method , 2006, Autom..
[22] Jamal Daafouz,et al. Stabilization of Arbitrary Switched Linear Systems With Unknown Time-Varying Delays , 2006, IEEE Transactions on Automatic Control.
[23] Huijun Gao,et al. Robust H∞ filtering for switched linear discrete‐time systems with polytopic uncertainties , 2006 .
[24] Guangming Xie,et al. Delay-dependent robust stability and Hinfinity control for uncertain discrete-time switched systems with mode-dependent time delays , 2007, Appl. Math. Comput..
[25] E. Sánchez,et al. OPTIMAL LINEAR FILTERING FOR SYSTEMS WITH MULTIPLE STATE AND OBSERVATION DELAYS , 2007 .
[26] Qing-Guo Wang,et al. Delay-range-dependent stability for systems with time-varying delay , 2007, Autom..
[27] E. Boukas,et al. Robust l2-l filtering for switched linear discrete time-delay systems with polytopic uncertainties , 2007 .
[28] Peng Shi,et al. $H_\infty$ Filtering of Discrete-Time Switched Systems With State Delays via Switched Lyapunov Function Approach , 2007, IEEE Transactions on Automatic Control.
[29] E. Boukas,et al. Exponential H∞ filtering for uncertain discrete‐time switched linear systems with average dwell time: A µ‐dependent approach , 2008 .