Identification of QTLs controlling seed dormancy in peach (Prunus persica)

[1]  D. Côme,et al.  INFLUENCE OF TEMPERATURE ON BREAKING OF DORMANCY, GERMINATION SENSU STRICTO AND GROWTH OF APPLE EMBRYO: THERMAL OPTIMUM OF THESE PHENOMENA , 2013 .

[2]  P. Martínez-Gómez,et al.  Inheritance of chilling and heat requirements for flowering in almond and QTL analysis , 2012, Tree Genetics & Genomes.

[3]  S. Fan,et al.  Mapping quantitative trait loci associated with chilling requirement, heat requirement and bloom date in peach (Prunus persica). , 2010, The New phytologist.

[4]  Roby Joehanes,et al.  QGene 4.0, an extensible Java QTL-analysis platform , 2008, Bioinform..

[5]  Dorrie Main,et al.  GDR (Genome Database for Rosaceae): integrated web-database for Rosaceae genomics and genetics data , 2007, Nucleic Acids Res..

[6]  A. Rohde,et al.  Plant dormancy in the perennial context. , 2007, Trends in plant science.

[7]  Pere Arús,et al.  Development and transportability across Prunus species of 42 polymorphic almond microsatellites , 2005 .

[8]  P. Martínez-Gómez,et al.  The possibilities of early selection of late-flowering almonds as a function of seed germination or leafing time of seedlings , 2005 .

[9]  正己 山口,et al.  SSR, STS, AFLPおよびRAPDマーカーを用いたモモの統合連鎖地図の作成 , 2005 .

[10]  P. Martínez-Gómez,et al.  Pollinizer influence on almond seed dormancy , 2005 .

[11]  P. Arús,et al.  Microsatellite genetic linkage maps of myrobalan plum and an almond-peach hybrid—location of root-knot nematode resistance genes , 2004, Theoretical and Applied Genetics.

[12]  Pere Arús,et al.  Comparative mapping and marker-assisted selection in Rosaceae fruit crops. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[13]  Pere Arús,et al.  Simple-sequence repeat (SSR) markers of Japanese plum (Prunus salicina Lindl.) are highly polymorphic and transferable to peach and almond , 2004 .

[14]  R. Sederoff,et al.  Targeted mapping and linkage analysis of morphological isozyme, and RAPD markers in peach , 1994, Theoretical and Applied Genetics.

[15]  P. Martínez-Gómez,et al.  Breaking seed dormancy in almond (Prunus dulcis (Mill.) D.A. Webb) , 2003 .

[16]  R. Geneve Impact of Temperature on Seed Dormancy , 2003 .

[17]  E. Dirlewanger,et al.  Development of microsatellite markers in peach [Prunus persica (L.) Batsch] and their use in genetic diversity analysis in peach and sweet cherry (Prunus avium L.) , 2002, Theoretical and Applied Genetics.

[18]  P. Arús,et al.  Development and variability analysis of microsatellite markers in peach , 2002 .

[19]  P. Martínez-Gómez,et al.  Mechanisms of dormancy in seeds of peach (Prunus persica (L.) Batsch) cv. GF305 , 2001 .

[20]  R. Messeguer,et al.  A reciprocal translocation between ’Garfi’ almond and ’Nemared’ peach , 2001, Theoretical and Applied Genetics.

[21]  A. Iezzoni,et al.  DNA Fingerprinting of Tetraploid Cherry Germplasm Using Simple Sequence Repeats , 2001 .

[22]  H. Yaegaki,et al.  Characterization of Morphological Traits Based on a Genetic Linkage Map in Peach , 2001 .

[23]  A. G. Abbott,et al.  Characterization of microsatellite markers in peach [Prunus persica (L.) Batsch] , 2000, Theoretical and Applied Genetics.

[24]  R. Testolin,et al.  Microsatellite DNA in peach (Prunus persica L. Batsch) and its use in fingerprinting and testing the genetic origin of cultivars. , 2000, Genome.

[25]  R. Testolin,et al.  AC/GT and AG/CT microsatellite repeats in peach [Prunus persica (L) Batsch]: isolation, characterisation and cross-species amplification in Prunus , 1999, Theoretical and Applied Genetics.

[26]  C. Rothan,et al.  Genetic linkage map of peach [Prunus persica (L.) Batsch] using morphological and molecular markers , 1998, Theoretical and Applied Genetics.

[27]  H. Ayanoğlu,et al.  Peach Seedling Emergence and Growth in Response to Isothermal and Cycled Stratification Treatments Reveal Two Dormancy Components , 1998 .

[28]  F. G. Dennis Dormancy : what we know (and don't know) , 1994 .

[29]  R. Doerge,et al.  Empirical threshold values for quantitative trait mapping. , 1994, Genetics.

[30]  S. Seeley,et al.  Chilling of Endodormant Peach Propagules: I. Seed Germination and Emergence , 1993 .

[31]  S. Seeley,et al.  Chilling of Endodormant Peach Propagules: II. Initial Seedling Growth , 1993 .

[32]  S. PÉREZ-GONZÁLEZ Relationship between parental blossom season and speed of seed germination in peach. , 1990 .

[33]  M. Daly,et al.  MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. , 1987, Genomics.

[34]  F. G. Dennis Two Methods of Studying Rest: Temperature Alteration and Genetic Analysis , 1987, Hortscience.

[35]  L. Powell Hormonal Aspects of Bud and Seed Dormancy in Temperate-zone Woody Plants , 1987, HortScience.

[36]  T. Gianfagna,et al.  Changes in gibberellin‐like substances of peach seed during stratification , 1986 .

[37]  S. Seeley,et al.  Response of Seed of Seven Deciduous Fruits to Stratification Temperatures and Implications for Modeling , 1985, Journal of the American Society for Horticultural Science.

[38]  A. Erez,et al.  Influence of Prolonged Exposure to Chilling Temperatures on Bud Break and Heat Requirement for Bloom of Several Fruit Species , 1985, Journal of the American Society for Horticultural Science.

[39]  D. Kester,et al.  CORRELATION OF CHILLING REQUIREMENTS FOR GERMINATION, BLOOMING AND LEAFING WITHIN AND AMONG SEEDLING POPULATIONS OF ALMOND , 1977 .

[40]  D. R. Walker,et al.  Pheno-climatography of spring peach bud development , 1975 .

[41]  D. R. Walker,et al.  A Model for Estimating the Completion of Rest for ‘Redhaven’ and ‘Elberta’ Peach Trees1 , 1974, HortScience.

[42]  B. M. Pollock Temperature Control of Physiological Dwarfing in Peach Seedlings , 1959, Nature.