A Weighted Erdős-Ginzburg-Ziv Theorem

An n-set partition of a sequence S is a collection of n nonempty subsequences of S, pairwise disjoint as sequences, such that every term of S belongs to exactly one of the subsequences, and the terms in each subsequence are all distinct so that they can be considered as sets. If S is a sequence of m+n−1 elements from a finite abelian group G of order m and exponent k, and if $$ W = {\left\{ {w_{i} } \right\}}^{n}_{{i = 1}} $$ is a sequence of integers whose sum is zero modulo k, then there exists a rearranged subsequence $$ {\left\{ {b_{i} } \right\}}^{n}_{{i = 1}} $$of S such that $$ {\sum\nolimits_{i = 1}^n {w_{i} b_{i} = 0} } $$. This extends the Erdős–Ginzburg–Ziv Theorem, which is the case when m = n and wi = 1 for all i, and confirms a conjecture of Y. Caro. Furthermore, we in part verify a related conjecture of Y. Hamidoune, by showing that if S has an n-set partition A=A1, . . .,An such that |wiAi| = |Ai| for all i, then there exists a nontrivial subgroup H of G and an n-set partition A′ =A′1, . . .,A′n of S such that $$ H \subseteq {\sum\nolimits_{i = 1}^n {w_{i} {A}\ifmmode{'}\else$'$\fi_{i} } } $$ and $$ {\left| {w_{i} {A}\ifmmode{'}\else$'$\fi_{i} } \right|} = {\left| {{A}\ifmmode{'}\else$'$\fi_{i} } \right|} $$ for all i, where wiAi={wiai |ai∈Ai}.

[1]  Arie Bialostocki,et al.  On the Erdös-Ginzburg-Ziv theorem and the Ramsey numbers for stars and matchings , 1992, Discret. Math..

[2]  John E. Olson An addition theorem for finite Abelian groups , 1977 .

[3]  E. Haacke Sequences , 2005 .

[4]  Luis H. Gallardo,et al.  On a variant of the Erdős-Ginzburg-Ziv problem , 1999 .

[5]  Roger Crocker,et al.  A theorem in additive number theory , 1969 .

[6]  M. Kneser,et al.  Ein Satz über abelsche Gruppen mit Anwendungen auf die Geometrie der Zahlen , 1954 .

[7]  Melvyn B. Nathanson,et al.  Additive Number Theory , 1996 .

[8]  Alain Plagne,et al.  Restricted addition in Z/nZ and an Application to the Erdős–Ginzburg–Ziv Problem , 2002 .

[9]  David J. Grynkiewicz,et al.  On Four Colored Sets with Nondecreasing Diameter and the Erds-Ginzburg-Ziv Theorem , 2002, J. Comb. Theory, Ser. A.

[10]  Yahya Ould Hamidoune On weighted sums in abelian groups , 1996, Discret. Math..

[11]  Yahya Ould Hamidoune On Weighted Sequence Sums , 1995, Comb. Probab. Comput..

[12]  Werner Brakemeier Eine Anzahlformel von Zahlen modulon , 1978 .

[13]  Zoltán Füredi,et al.  On zero-trees , 1992, J. Graph Theory.

[14]  Oscar Ordaz,et al.  On a Combinatorial Theorem of Erdös, Ginzburg and Ziv , 1998, Comb. Probab. Comput..

[15]  J. H. B. Kemperman,et al.  On small sumsets in an abelian group , 1960 .

[16]  David J. Grynkiewicz,et al.  On a partition analog of the Cauchy-Davenport theorem , 2005 .

[17]  A. Ziv,et al.  Theorem in the Additive Number Theory , 2022 .

[18]  Noga Alon,et al.  Zero-sum sets of prescribed size , 1993 .

[19]  Arie Bialostocki,et al.  Zero Sum Trees: A Survey of Results and Open Problems , 1993 .

[20]  Oscar Ordaz,et al.  On the Erdös-Ginzburg-Ziv theorem , 1996, Discret. Math..

[21]  Weidong Gao,et al.  Zero Sums in Abelian Groups , 1998, Comb. Probab. Comput..

[22]  Xin Jin,et al.  Weighted sums in finite cyclic groups , 2004, Discret. Math..

[23]  M. Kneser,et al.  Abschätzung der asymptotischen Dichte von Summenmengen , 1953 .

[24]  Paul D. Seymour,et al.  A simpler proof and a generalization of the zero-trees theorem , 1991, J. Comb. Theory, Ser. A.

[25]  Xiang-dong Hou,et al.  A Generalization of an Addition Theorem of Kneser , 2002 .

[26]  Yair Caro,et al.  Zero-sum problems - A survey , 1996, Discret. Math..

[27]  David J. Grynkiewicz,et al.  Monochromatic and Zero-Sum Sets of Nondecreasing Modified Diameter , 2006, Electron. J. Comb..

[28]  H. L. Abbott,et al.  On A Combinatorial Problem of Erdös , 1969, Canadian Mathematical Bulletin.

[29]  Harold Davenport,et al.  On the Addition of Residue Classes , 1935 .

[30]  Yair Caro Remarks on a Zero-Sum Theorem , 1996 .

[31]  David J. Grynkiewicz,et al.  On some developments of the Erdős–Ginzburg–Ziv Theorem II , 2003 .

[32]  Carl R. Yerger Monochromatic and Zero-Sum Sets of Nondecreasing Diameter , 2005 .