Optics Design and Optimizations of the Multi-Color TES Bolometer Camera for the ASTE Telescope

Wideband continuum observations at the millimeter and submillimeter wavelengths are of great importance to the understanding of the cosmic history of star-formation across the Hubble time, as well as the thermal and non-thermal aspects of clusters of galaxies through the Sunyaev-Zel'dovich effect. To promote such studies, a new TES bolometer camera for the ASTE telescope has been developed. In this article we present the study of the optics system that will couple the camera to the telescope's Cassegrain optics. Two-color simultaneous observation capability and 7.5 ' diameter FoV are achieved. These two focal planes are used for the 270 and 350 GHz bands for Phase I, and the 350 and 670 GHz bands for Phase II configurations. The numbers of pixels are 169, 271, and 919 pixels for 270, 350, and 670 GHz bands, respectively. The shape of the third ellipsoid mirror is optimized, and the designed optics is foreseen to be diffraction limited. The optics is also evaluated via physical optics calculations, and the diameter of the cold pupil is optimized to 85% of the geometrical design. Without filters and Ruze losses, the aperture efficiencies of each beam are ~35%, 35%, and 32%, and the beam sizes are ~28", 22", and 12", for the 270, 350, and 670 GHz bands, respectively.

[1]  G. M. Morris,et al.  Antireflection structured surfaces for the infrared spectral region. , 1993, Applied optics.

[2]  Sophia A. Khan,et al.  AzTEC/ASTE 1.1-mm Survey of the AKARI Deep Field-South , 2010, 1010.0585.

[3]  G. Schwarz,et al.  Thermal expansion of polymers from 4.2 K to room temperature , 1988 .

[4]  A. Lee,et al.  Development of TES Bolometer Camera for ASTE Telescope: I. Bolometer Design , 2013, IEEE Transactions on Applied Superconductivity.

[5]  Hilo,et al.  SCUBA: A Common - user submillimetre camera operating on the James Clerk Maxwell telescope , 1998, astro-ph/9809122.

[6]  J. Austermann,et al.  AzTEC millimetre survey of the COSMOS field – III. Source catalogue over 0.72 deg2 and plausible boosting by large-scale structure , 2011, 1105.0890.

[7]  G. M. Morris,et al.  Analysis of antireflection-structured surfaces with continuous one-dimensional surface profiles. , 1993, Applied optics.

[8]  J. Beeman,et al.  Bolometer array development at the Max-Planck-Institut für Radioastronomie , 1999 .

[9]  Keren Jacobs,et al.  Low loss THz window , 2005 .

[10]  Satoshi Yamamoto,et al.  The Atacama Submillimeter Telescope Experiment (ASTE) , 2004, SPIE Astronomical Telescopes + Instrumentation.

[11]  A. Kovacs,et al.  CRUSH: fast and scalable data reduction for imaging arrays , 2008, Astronomical Telescopes + Instrumentation.

[12]  Douglas Scott,et al.  SCUBA-2: a 10,000-pixel submillimeter camera for the James Clerk Maxwell Telescope , 2006, SPIE Astronomical Telescopes + Instrumentation.

[13]  S. Ott,et al.  Herschel Space Observatory - An ESA facility for far-infrared and submillimetre astronomy , 2010, 1005.5331.

[14]  Giampaolo Pisano,et al.  A review of metal mesh filters , 2006, SPIE Astronomical Telescopes + Instrumentation.

[15]  Gerd Jakob,et al.  Optical Characterization of Absorbing Coatings for Sub-millimeter Radiation , 2001 .

[16]  Adrian T. Lee,et al.  Invited article: millimeter-wave bolometer array receiver for the Atacama pathfinder experiment Sunyaev-Zel'dovich (APEX-SZ) instrument. , 2010, The Review of scientific instruments.

[17]  James J. Bock,et al.  Bolocam: status and observations , 2004, SPIE Astronomical Telescopes + Instrumentation.

[18]  Eugene E. Haller,et al.  The large APEX bolometer camera LABOCA , 2008, Astronomical Telescopes + Instrumentation.

[19]  Itziar Aretxaga,et al.  New achievements of ASTE: the Atacama Submillimeter Telescope Experiment , 2008, Astronomical Telescopes + Instrumentation.

[20]  D. H. Hughes,et al.  Deep 1.1 mm-wavelength imaging of the GOODS-S field by AzTEC/ASTE ― I. Source catalogue and number counts , 2010, 1003.1768.

[21]  Eugene E. Haller,et al.  Bolometer array development at the Max-Planck-Institut fuer Radioastronomie , 1998, Astronomical Telescopes and Instrumentation.

[22]  G. Wilson,et al.  SUBMILLIMETER ARRAY IDENTIFICATION OF THE MILLIMETER-SELECTED GALAXY SSA22-AzTEC1: A PROTOQUASAR IN A PROTOCLUSTER? , 2010, 1010.1267.

[23]  W. Percival,et al.  The SCUBA half-degree extragalactic survey - II. Submillimetre maps, catalogue and number counts , 2006, astro-ph/0609039.

[24]  Satoki Matsushita,et al.  FTS Measurements of Submillimeter-Wave Atmospheric Opacity at Pampa la Bola II : Supra-Terahertz Windows and Model Fitting , 1999 .

[25]  J. Hubmayr,et al.  Design Evolution of the Spiderweb TES Bolometer for Cosmology Applications , 2012 .

[26]  R. J. Corruccini,et al.  Thermal Expansion of Technical Solids at Low Temperatures: A Compilation From the Literature , 1961 .

[27]  K. Souccar,et al.  The AzTEC mm-wavelength camera , 2008, 0801.2783.

[28]  J. Dunlop,et al.  The source counts of submillimetre galaxies detected at λ= 1.1 mm , 2012, 1203.2609.

[29]  H. G. Hughes,et al.  AzTEC on ASTE Survey of Submillimeter Galaxies , 2008 .

[30]  J. R. Birch,et al.  The optical constants of some common low-loss polymers between 4 and 40 cm -1 , 1981 .

[31]  M. Lueker,et al.  The South Pole Telescope SZ-Receiver Detectors , 2009, IEEE Transactions on Applied Superconductivity.