Flexible electronic skins based on piezoelectric nanogenerators and piezotronics

[1]  K. Chun,et al.  A Self‐Powered Sensor Mimicking Slow‐ and Fast‐Adapting Cutaneous Mechanoreceptors , 2018, Advanced materials.

[2]  Zhong Lin Wang,et al.  Flexible piezotronic strain sensor. , 2008, Nano letters.

[3]  V. Sencadas,et al.  Relationship between the microstructure and the microscopic piezoelectric response of the α- and β-phases of poly(vinylidene fluoride) , 2009 .

[4]  Yan Zhang,et al.  A self-powered flexible vision electronic-skin for image recognition based on a pixel-addressable matrix of piezophototronic ZnO nanowire arrays , 2017 .

[5]  장윤희,et al.  Y. , 2003, Industrial and Labor Relations Terms.

[6]  Danna Zhou,et al.  d. , 1840, Microbial pathogenesis.

[7]  Zhong Lin Wang,et al.  Piezoelectric field effect transistor and nanoforce sensor based on a single ZnO nanowire. , 2006, Nano letters.

[8]  B. Hu,et al.  Ultrasensitive cellular fluorocarbon piezoelectret pressure sensor for self-powered human physiological monitoring , 2017 .

[9]  P. Alam ‘K’ , 2021, Composites Engineering.

[10]  P. Alam ‘W’ , 2021, Composites Engineering.

[11]  Lei Jiang,et al.  Superhydrophobic and Superoleophilic PVDF Membranes for Effective Separation of Water‐in‐Oil Emulsions with High Flux , 2013, Advanced materials.

[12]  Xinyu Xue,et al.  Self-powered gustation electronic skin for mimicking taste buds based on piezoelectric–enzymatic reaction coupling process , 2018, Nanotechnology.

[13]  Manoj Kumar Gupta,et al.  Micropatterned P(VDF‐TrFE) Film‐Based Piezoelectric Nanogenerators for Highly Sensitive Self‐Powered Pressure Sensors , 2015 .

[14]  Yaliang Li,et al.  SCI , 2021, Proceedings of the 30th ACM International Conference on Information & Knowledge Management.

[15]  Dongmei Li,et al.  The influence of different doping elements on microstructure, piezoelectric coefficient and resistivity of sputtered ZnO film , 2006 .

[16]  Aifang Yu,et al.  Nanogenerator as self-powered vibration sensor , 2012 .

[17]  X. Bai,et al.  In situ transmission electron microscopy investigation on fatigue behavior of single ZnO wires under high-cycle strain. , 2014, Nano letters (Print).

[18]  Fang Zhang,et al.  Nano‐Newton Transverse Force Sensor Using a Vertical GaN Nanowire based on the Piezotronic Effect , 2013, Advanced materials.

[19]  Navonil Bose,et al.  NiO@SiO2/PVDF: A Flexible Polymer Nanocomposite for a High Performance Human Body Motion-Based Energy Harvester and Tactile e-Skin Mechanosensor , 2018, ACS Sustainable Chemistry & Engineering.

[20]  M. Kotaki,et al.  Morphology, polymorphism behavior and molecular orientation of electrospun poly(vinylidene fluoride) fibers , 2007 .

[21]  Kory Jenkins,et al.  Self-assembly of diphenylalanine peptide with controlled polarization for power generation , 2016, Nature Communications.

[22]  Ying Wu,et al.  Piezoelectric diphenylalanine peptide for greatly improved flexible nanogenerators , 2018, Nano Energy.

[23]  Haoxuan He,et al.  A flexible self-powered T-ZnO/PVDF/fabric electronic-skin with multi-functions of tactile-perception, atmosphere-detection and self-clean , 2017 .

[24]  이화영 X , 1960, Chinese Plants Names Index 2000-2009.

[25]  D. Mandal,et al.  Electrospun Gelatin Nanofiber Based Self-Powered Bio- e -Skin for Health Care Monitoring , 2017 .

[26]  G. Alagic,et al.  #p , 2019, Quantum Inf. Comput..

[27]  Yicheng Lu,et al.  ZnO Schottky barriers and Ohmic contacts , 2011 .

[28]  Geon-Tae Hwang,et al.  Piezoelectric BaTiO₃ thin film nanogenerator on plastic substrates. , 2010, Nano letters.

[29]  Zhong Lin Wang From nanogenerators to piezotronics—A decade-long study of ZnO nanostructures , 2012 .

[30]  Werner Karl Schomburg,et al.  Pressure sensor from a PVDF film , 2008 .

[31]  Hyun-Jin Kim,et al.  Enhancement of piezoelectricity via electrostatic effects on a textile platform , 2012 .

[32]  Zhong Lin Wang,et al.  Piezotronics and piezo-phototronics – From single nanodevices to array of devices and then to integrated functional system , 2013 .

[33]  Vu Nguyen,et al.  Piezotronic Effect: An Emerging Mechanism for Sensing Applications , 2015, Sensors.

[34]  Minbaek Lee,et al.  Piezopotential gated nanowire--nanotube hybrid field-effect transistor. , 2010, Nano letters.

[35]  Haoxuan He,et al.  Self-powered vision electronic-skin basing on piezo-photodetecting Ppy/PVDF pixel-patterned matrix for mimicking vision , 2018, Nanotechnology.

[36]  Yan Zhang,et al.  Self-powered implantable electronic-skin for in situ analysis of urea/uric-acid in body fluids and the potential applications in real-time kidney-disease diagnosis. , 2018, Nanoscale.

[37]  Hyung-Kew Lee,et al.  A Flexible Polymer Tactile Sensor: Fabrication and Modular Expandability for Large Area Deployment , 2006, Journal of Microelectromechanical Systems.

[38]  Zhong Lin Wang,et al.  High performance of ZnO nanowire protein sensors enhanced by the piezotronic effect , 2013 .

[39]  Zhong Lin Wang,et al.  Piezotronic effect enhanced detection of flammable/toxic gases by ZnO micro/nanowire sensors , 2015 .

[40]  Kang Hyuck Lee,et al.  Point‐Defect‐Passivated MoS2 Nanosheet‐Based High Performance Piezoelectric Nanogenerator , 2018, Advanced materials.

[41]  Yu Song,et al.  Flexible fiber-based hybrid nanogenerator for biomechanical energy harvesting and physiological monitoring , 2017 .

[42]  Biswajit Mahanty,et al.  Two‐Dimensional Piezoelectric MoS2‐Modulated Nanogenerator and Nanosensor Made of Poly(vinlydine Fluoride) Nanofiber Webs for Self‐Powered Electronics and Robotics , 2017 .

[43]  Fang Zhang,et al.  Enhanced Performance of Flexible ZnO Nanowire Based Room‐Temperature Oxygen Sensors by Piezotronic Effect , 2013, Advanced materials.

[44]  Ren Zhu,et al.  Highly sensitive and flexible strain sensors based on vertical zinc oxide nanowire arrays , 2014 .

[45]  Zhiyong Fan,et al.  Bionic Single-Electrode Electronic Skin Unit Based on Piezoelectric Nanogenerator. , 2018, ACS nano.

[46]  S. Lanceros‐Méndez,et al.  Influence of the β-phase content and degree of crystallinity on the piezo- and ferroelectric properties of poly(vinylidene fluoride) , 2010 .

[47]  Aihua He,et al.  Polymorphism Control of Poly(vinylidene fluoride) through Electrospinning , 2007 .

[48]  Qi Xu,et al.  Biocompatible Nanogenerators through High Piezoelectric Coefficient 0.5Ba(Zr0.2Ti0.8)O3‐0.5(Ba0.7Ca0.3)TiO3 Nanowires for In‐Vivo Applications , 2014, Advanced materials.

[49]  Mengmeng Liu,et al.  Ultrastretchable, transparent triboelectric nanogenerator as electronic skin for biomechanical energy harvesting and tactile sensing , 2017, Science Advances.

[50]  Xinyu Xue,et al.  Self-powering/self-cleaning electronic-skin basing on PVDF/TiO 2 nanofibers for actively detecting body motion and degrading organic pollutants , 2017 .

[51]  P. Alam ‘Z’ , 2021, Composites Engineering: An A–Z Guide.

[52]  W. Deng,et al.  A flexible field-limited ordered ZnO nanorod-based self-powered tactile sensor array for electronic skin. , 2016, Nanoscale.

[53]  Benjamin C. K. Tee,et al.  25th Anniversary Article: The Evolution of Electronic Skin (E‐Skin): A Brief History, Design Considerations, and Recent Progress , 2013, Advanced materials.

[54]  Zhong Lin Wang Piezopotential gated nanowire devices: Piezotronics and piezo-phototronics , 2010 .

[55]  Wenlong Cheng,et al.  Resistive electronic skin , 2017 .

[56]  C. Chen,et al.  Bending strength and flexibility of ZnO nanowires , 2007 .

[57]  S. Bauer,et al.  Flexible active-matrix cells with selectively poled bifunctional polymer-ceramic nanocomposite for pressure and temperature sensing skin , 2009 .

[58]  Z. Lou,et al.  Recent Developments in Graphene‐Based Tactile Sensors and E‐Skins , 2018 .

[59]  Chang Kyu Jeong,et al.  Highly‐Efficient, Flexible Piezoelectric PZT Thin Film Nanogenerator on Plastic Substrates , 2014, Advanced materials.

[60]  Zhong Lin Wang,et al.  Piezoelectric gated diode of a single zno nanowire , 2007 .

[61]  Yaokun Pang,et al.  Ultrathin Piezotronic Transistors with 2 nm Channel Lengths. , 2018, ACS nano.

[62]  Tao Jiang,et al.  Stimulating Acrylic Elastomers by a Triboelectric Nanogenerator – Toward Self‐Powered Electronic Skin and Artificial Muscle , 2016 .

[63]  Adv , 2019, International Journal of Pediatrics and Adolescent Medicine.

[64]  Jie Xiong,et al.  Lattice Strain Induced Remarkable Enhancement in Piezoelectric Performance of ZnO-Based Flexible Nanogenerators. , 2016, ACS applied materials & interfaces.

[65]  Zhong Lin Wang,et al.  Hybrid nanogenerator for concurrently harvesting biomechanical and biochemical energy. , 2010, ACS nano.

[66]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[67]  Y. Qiu,et al.  ZnO Nanotetrapods: Controlled Vapor‐Phase Synthesis and Application for Humidity Sensing , 2007 .

[68]  Thomas de Quincey [C] , 2000, The Works of Thomas De Quincey, Vol. 1: Writings, 1799–1820.

[69]  Clarisse Ribeiro,et al.  Influence of Processing Conditions on Polymorphism and Nanofiber Morphology of Electroactive Poly(vinylidene fluoride) Electrospun Membranes , 2010 .

[70]  Antonio-José Almeida,et al.  NAT , 2019, Springer Reference Medizin.

[71]  Zhong‐Lin Wang,et al.  Progress in Piezotronics and Piezo‐Phototronics , 2012, Advanced materials.

[72]  Zhong Lin Wang,et al.  Recent Progress in Electronic Skin , 2015, Advanced science.

[73]  In-Won Lee,et al.  Development of an array of pressure sensors with PVDF film , 1999 .

[74]  Yu Song,et al.  Hybrid porous micro structured finger skin inspired self-powered electronic skin system for pressure sensing and sliding detection , 2018, Nano Energy.

[75]  Dipankar Mandal,et al.  Sustainable Energy Generation from Piezoelectric Biomaterial for Noninvasive Physiological Signal Monitoring , 2017 .

[76]  Vu Nguyen,et al.  Piezoelectric peptide-based nanogenerator enhanced by single-electrode triboelectric nanogenerator , 2017 .

[77]  Yu Song,et al.  Self-powered electronic skin based on the triboelectric generator , 2019, Nano Energy.

[78]  Caofeng Pan,et al.  Enhanced Performance of a ZnO Nanowire‐Based Self‐Powered Glucose Sensor by Piezotronic Effect , 2013 .

[79]  Sigurd Wagner,et al.  Mechanisms of reversible stretchability of thin metal films on elastomeric substrates , 2006 .

[80]  Zhong Lin Wang,et al.  Transparent and Self-Powered Multistage Sensation Matrix for Mechanosensation Application. , 2017, ACS nano.

[81]  Yonggang Huang,et al.  High performance piezoelectric devices based on aligned arrays of nanofibers of poly(vinylidenefluoride-co-trifluoroethylene) , 2013, Nature Communications.

[82]  Lei Jiang,et al.  An Intelligent Superwetting PVDF Membrane Showing Switchable Transport Performance for Oil/Water Separation , 2014, Advanced materials.

[83]  Zhong Lin Wang,et al.  Solution-derived ZnO homojunction nanowire films on wearable substrates for energy conversion and self-powered gesture recognition. , 2014, Nano letters.

[84]  Tsuyoshi Murata,et al.  {m , 1934, ACML.

[85]  P. W. Bridgman The Effect of Homogeneous Mechanical Stress on the Electrical Resistance of Crystals , 1932 .

[86]  Zhong Lin Wang,et al.  Triboelectric active sensor array for self-powered static and dynamic pressure detection and tactile imaging. , 2013, ACS nano.

[87]  N. Lee,et al.  Flexible and Stretchable Piezoelectric Sensor with Thickness-Tunable Configuration of Electrospun Nanofiber Mat and Elastomeric Substrates. , 2016, ACS applied materials & interfaces.

[88]  Andrew G. Glen,et al.  APPL , 2001 .

[89]  Zhong Lin Wang,et al.  Piezotronics and piezo-phototronics for adaptive electronics and optoelectronics , 2016 .

[90]  Chengkuo Lee,et al.  An intelligent skin based self-powered finger motion sensor integrated with triboelectric nanogenerator , 2016 .

[91]  Yong Ding,et al.  Conversion of Zinc Oxide Nanobelts into Superlattice-Structured Nanohelices , 2005, Science.

[92]  Ren Zhu,et al.  High Output Piezoelectric Nanogenerator: Development and Application , 2012 .

[93]  Y Q Chen,et al.  The fabrication of vanadium-doped ZnO piezoelectric nanofiber by electrospinning , 2010, Nanotechnology.

[94]  Ying-Chih Lai,et al.  Electric Eel‐Skin‐Inspired Mechanically Durable and Super‐Stretchable Nanogenerator for Deformable Power Source and Fully Autonomous Conformable Electronic‐Skin Applications , 2016, Advanced materials.

[95]  Maksim Skorobogatiy,et al.  Piezoelectric Micro- and Nanostructured Fibers Fabricated from Thermoplastic Nanocomposites Using a Fiber Drawing Technique: Comparative Study and Potential Applications. , 2017, ACS nano.

[96]  J. Jang,et al.  Highly Sensitive and Multifunctional Tactile Sensor Using Free-standing ZnO/PVDF Thin Film with Graphene Electrodes for Pressure and Temperature Monitoring , 2015, Scientific Reports.

[97]  Dipankar Mandal,et al.  High-performance bio-piezoelectric nanogenerator made with fish scale , 2016 .

[98]  Zhong‐Lin Wang,et al.  Strain‐Gated Piezotronic Logic Nanodevices , 2010, Advanced materials.

[99]  Chem. , 2020, Catalysis from A to Z.

[100]  Guy de Villers Sens , 2019, Vocabulaire des histoires de vie et de la recherche biographique.

[101]  Zhong Lin Wang,et al.  Piezoelectricity of single-atomic-layer MoS2 for energy conversion and piezotronics , 2014, Nature.

[102]  Joo-Yun Jung,et al.  Hemispherically aggregated BaTiO3 nanoparticle composite thin film for high-performance flexible piezoelectric nanogenerator. , 2014, ACS nano.

[103]  Jonghwa Park,et al.  Bioinspired Interlocked and Hierarchical Design of ZnO Nanowire Arrays for Static and Dynamic Pressure‐Sensitive Electronic Skins , 2015 .

[104]  Ren Zhu,et al.  Separation of the piezotronic and piezoresistive effects in a zinc oxide nanowire , 2014, Nanotechnology.

[105]  N. Lee,et al.  A Sensor Array Using Multi-functional Field-effect Transistors with Ultrahigh Sensitivity and Precision for Bio-monitoring , 2015, Scientific Reports.

[106]  Zhong Lin Wang Novel nanostructures of ZnO for nanoscale photonics, optoelectronics, piezoelectricity, and sensing , 2007 .

[107]  Wanchul Seung,et al.  Active Matrix Electronic Skin Strain Sensor Based on Piezopotential‐Powered Graphene Transistors , 2015, Advanced materials.

[108]  Yan Zhang,et al.  Ultrahigh sensitive piezotronic strain sensors based on a ZnSnO3 nanowire/microwire. , 2012, ACS nano.

[109]  Candido Pirri,et al.  Nanobranched ZnO Structure: p‐Type Doping Induces Piezoelectric Voltage Generation and Ferroelectric–Photovoltaic Effect , 2015, Advanced materials.

[110]  Francisco M. Gama,et al.  Effect of poling state and morphology of piezoelectric poly(vinylidene fluoride) membranes for skeletal muscle tissue engineering , 2013 .

[111]  Zheng Zhang,et al.  Highly efficient piezotronic strain sensors with symmetrical Schottky contacts on the monopolar surface of ZnO nanobelts. , 2015, Nanoscale.

[112]  Charles S. Smith Piezoresistance Effect in Germanium and Silicon , 1954 .

[113]  Kory Jenkins,et al.  Mechanical transfer of ZnO nanowires for a flexible and conformal piezotronic strain sensor , 2017 .

[114]  P. Alam ‘S’ , 2021, Composites Engineering: An A–Z Guide.

[115]  Yonggang Huang,et al.  Conformable amplified lead zirconate titanate sensors with enhanced piezoelectric response for cutaneous pressure monitoring , 2014, Nature Communications.

[116]  Jun Zhou,et al.  High‐Strain Sensors Based on ZnO Nanowire/Polystyrene Hybridized Flexible Films , 2011, Advanced materials.