A verifiable framework of entanglement-free quantum secret sharing with information-theoretical security

Quantum secret sharing (QSS) schemes without entanglement have huge advantages in scalability and are easier to realize as they only require sequential communications of a single quantum system. However, these schemes often come with drawbacks such as exact (n, n) structure, security flaws and absences of effective cheating detections. To address these problems, we propose a verifiable framework by utilizing entanglement-free states to construct (t, n)-QSS schemes. Our work is the heuristic step toward information-theoretical security in entanglement-free QSS, and it sheds light on how to establish effective verification mechanism against cheating. As a result, the proposed framework has a significant importance in constructing QSS schemes for versatile applications in quantum networks due to its intrinsic scalability, flexibility and information-theoretical security.

[1]  Yao Fu,et al.  Long-distance measurement-device-independent multiparty quantum communication. , 2014, Physical review letters.

[2]  W. Wootters,et al.  A single quantum cannot be cloned , 1982, Nature.

[3]  M. Koashi,et al.  Quantum entanglement for secret sharing and secret splitting , 1999 .

[4]  Ying Sun,et al.  Cryptanalysis of quantum secret sharing with d -level single particles , 2016 .

[5]  Jian-Wei Pan,et al.  Experimental quantum secret sharing and third-man quantum cryptography. , 2005, Physical review letters.

[6]  D. Gottesman Theory of quantum secret sharing , 1999, quant-ph/9910067.

[7]  Ma Hai-Qiang,et al.  Experimental single qubit quantum secret sharing in a fiber network configuration , 2013 .

[8]  John Bloom,et al.  A modular approach to key safeguarding , 1983, IEEE Trans. Inf. Theory.

[9]  Lein Harn,et al.  Full-healing group-key distribution in online social networks , 2016, Int. J. Secur. Networks.

[10]  Tatsuaki Okamoto,et al.  Threshold quantum cryptography , 2005 .

[11]  Adi Shamir,et al.  How to share a secret , 1979, CACM.

[12]  James L. Massey,et al.  Minimal Codewords and Secret Sharing , 1999 .

[13]  Adrian Kent,et al.  Unconditionally Secure Bit Commitment by Transmitting Measurement Outcomes , 2011, Physical review letters.

[14]  Changbin Lu,et al.  Verifiable threshold quantum secret sharing with sequential communication , 2017, Quantum Information Processing.

[15]  Christian Kurtsiefer,et al.  Experimental single qubit quantum secret sharing. , 2005, Physical review letters.

[16]  Christian Weedbrook,et al.  Quantum secret sharing with continuous-variable cluster states , 2013, 1304.8128.

[17]  W. Wernsdorfer,et al.  Generalized Ramsey interferometry explored with a single nuclear spin qudit , 2018, npj Quantum Information.

[18]  Guang Ping He,et al.  Quantum secret sharing based on Smolin states alone , 2008 .

[19]  Ching-Yu Huang,et al.  Quantum secret sharing with multilevel mutually (un)biased bases , 2007, 0711.3111.

[20]  Unruh Maintaining coherence in quantum computers. , 1994, Physical review. A, Atomic, molecular, and optical physics.

[21]  W. P. Bowen,et al.  Continuous variable (2, 3) threshold quantum secret sharing schemes , 2003 .

[22]  V. Karimipour,et al.  Quantum secret sharing and random hopping: Using single states instead of entanglement , 2015, 1506.02966.

[23]  G. R. BLAKLEY Safeguarding cryptographic keys , 1979, 1979 International Workshop on Managing Requirements Knowledge (MARK).

[24]  K. Thas The geometry of generalized Pauli operators of N-qudit Hilbert space, and an application to MUBs , 2009 .

[25]  R. Cleve,et al.  HOW TO SHARE A QUANTUM SECRET , 1999, quant-ph/9901025.

[26]  Damian Markham,et al.  Equivalence between sharing quantum and classical secrets and error correction , 2012, 1205.4182.

[27]  Yue Yu,et al.  Threshold quantum secret sharing based on single qubit , 2018, Quantum Inf. Process..

[28]  Matthew G. Parker,et al.  Quantum secret sharing based on local distinguishability , 2014, ArXiv.

[29]  Guang Ping He,et al.  Comment on "experimental single qubit quantum secret sharing". , 2007, Physical review letters.

[30]  Xiaohua Zhu,et al.  (t, n) Threshold quantum secret sharing using the phase shift operation , 2015, Quantum Inf. Process..

[31]  Gerardo Adesso,et al.  Unconditional security of entanglement-based continuous-variable quantum secret sharing , 2016, 1603.03224.

[32]  D. Markham,et al.  Quantum secret sharing with qudit graph states , 2010, 1004.4619.

[33]  Lein Harn,et al.  Group Authentication , 2013, IEEE Transactions on Computers.

[34]  D. Dieks Communication by EPR devices , 1982 .

[35]  Fei Gao,et al.  A simple participant attack on the brádler-dušek protocol , 2007, Quantum Inf. Comput..

[36]  Hong-Yu Zhou,et al.  An efficient quantum secret sharing scheme with Einstein–Podolsky–Rosen pairs , 2005 .

[37]  Peter W. Shor,et al.  Algorithms for quantum computation: discrete logarithms and factoring , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.

[38]  李志慧 李永明 白晨明,et al.  Sequential Quantum Secret Sharing Using a Single Qudit , 2018 .

[39]  Haipeng Peng,et al.  Restricted (k, n)-threshold quantum secret sharing scheme based on local distinguishability of orthogonal multiqudit entangled states , 2017, Quantum Inf. Process..

[40]  V. Karimipour,et al.  Quantum secret sharing based on reusable GHZ states as secure carriers , 2002, quant-ph/0204124.

[41]  Lov K. Grover Quantum Mechanics Helps in Searching for a Needle in a Haystack , 1997, quant-ph/9706033.

[42]  Z. Man,et al.  Multiparty quantum secret sharing of classical messages based on entanglement swapping , 2004, quant-ph/0406103.

[43]  N. Gisin,et al.  Experimental demonstration of quantum secret sharing , 2001 .

[44]  V. Buzek,et al.  Quantum secret sharing , 1998, quant-ph/9806063.

[45]  Barry C. Sanders,et al.  Erratum: Graph states for quantum secret sharing [Phys. Rev. A 78, 042309 (2008)] , 2011 .

[46]  Alexandra Boldyreva,et al.  Efficient threshold signature, multisignature and blind signature schemes based on the Gap-Diffie-Hellman-Group signature scheme , 2002 .

[47]  M. Żukowski,et al.  Secret sharing with a single d -level quantum system , 2015 .

[48]  R. J. McEliece,et al.  On sharing secrets and Reed-Solomon codes , 1981, CACM.

[49]  Kinjal Patel,et al.  Secure multiparty computation using secret sharing , 2016, 2016 International Conference on Signal Processing, Communication, Power and Embedded System (SCOPES).

[50]  L. Harn Group-oriented (t, n) threshold digital signature scheme and digital multisignature , 1994 .

[51]  N. Spagnolo,et al.  Experimental Engineering of Arbitrary Qudit States with Discrete-Time Quantum Walks. , 2018, Physical review letters.

[52]  Maurice Mignotte,et al.  How to Share a Secret? , 1982, EUROCRYPT.

[53]  Jian-Wei Pan,et al.  Experimental Ten-Photon Entanglement. , 2016, Physical review letters.

[54]  D. Markham,et al.  Graph states for quantum secret sharing , 2008, 0808.1532.