Bayesian Techniques in Spatial and Network Econometrics: 1. Model Comparison and Posterior Odds

In this paper the problems of specification and nonnested model comparison in spatial and network econometrics are examined, and the Bayesian posterior probabilities approach is developed. The theory is developed for the comparison of alternative spatial weights matrices in both the systematic and the disturbance components of models, and also for the comparison of alternative spatial disturbance processes. Several empirical illustrations are provided, and extensions of the Bayesian approach are discussed.

[1]  Sylvia Richardson,et al.  Spatial Linear Models with Autocorrelated Error Structure , 1992 .

[2]  Nonnested testing for autocorrelation in the linear regression model , 1993 .

[3]  H. Akaike Likelihood of a model and information criteria , 1981 .

[4]  Luc Anselin,et al.  A Note on Small Sample Properties of Estimators in a First-Order Spatial Autoregressive Model , 1982 .

[5]  M. Aitkin Posterior Bayes Factors , 1991 .

[6]  Luc Anselin,et al.  Specification tests on the structure of interaction in spatial econometric models , 1984 .

[7]  H. V. Dijk,et al.  A Bayesian analysis of the unit root in real exchange rates , 1991 .

[8]  A. Atkinson Likelihood ratios, posterior odds and information criteria , 1981 .

[9]  A. M. Walker Some tests of separate families of hypotheses in time series analysis. , 1967, Biometrika.

[10]  Harvey S. Rosen,et al.  Budget spillovers and fiscal policy interdependence: Evidence from the states , 1993 .

[11]  C. D. Litton,et al.  Theory of Probability (3rd Edition) , 1984 .

[12]  Jean-Francois Richard,et al.  The Encompassing Principle and Its Application to Testing Non-nested Hypotheses , 1986 .

[13]  P. Burridge,et al.  Testing for a Common Factor in a Spatial Autoregression Model , 1981 .

[14]  Jean-Pierre Florens,et al.  Elements of Bayesian Statistics , 1990 .

[15]  M. H. Pesaran,et al.  On the general problem of model selection , 1974 .

[16]  A. Zellner An Introduction to Bayesian Inference in Econometrics , 1971 .

[17]  Robert Haining,et al.  Small Area Aggregate Income Models: Theory and Methods with an Application to Urban and Rural Income Data for Pennsylvania , 1987 .

[18]  Hong Chang,et al.  Model Determination Using Predictive Distributions with Implementation via Sampling-Based Methods , 1992 .

[19]  Hans J. Blommestein,et al.  Specification and estimation of spatial econometric models: A discussion of alternative strategies for spatial economic modelling , 1983 .

[20]  H. Akaike A new look at the statistical model identification , 1974 .

[21]  R. Haining Spatial Data Analysis in the Social and Environmental Sciences , 1990 .

[22]  M M Dow,et al.  Comparison of distance matrices in studies of population structure and genetic microdifferentiation: quadratic assignment. , 1985, American journal of physical anthropology.

[23]  R. Haining The moving average model for spatial interaction , 1978 .

[24]  Q. Vuong Likelihood Ratio Tests for Model Selection and Non-Nested Hypotheses , 1989 .

[25]  Donald Poskitt,et al.  On the posterior odds of time series models , 1983 .

[26]  J. Monahan Fully Bayesian analysis of ARMA time series models , 1983 .

[27]  P. Doreian Linear Models with Spatially Distributed Data , 1980 .

[28]  A. J. Buck,et al.  Appropriate roles for statistical decision theory and hypothesis testing in model selection: An exposition , 1981 .

[29]  Arnold Zellner,et al.  BAYESIAN ANALYSIS OF THE REGRESSION MODEL WITH AUTOCORRELATED ERRORS. , 1964 .

[30]  Mark F. J. Steel,et al.  Robust bayesian inference in elliptical regression models , 1993 .

[31]  D. Hendry,et al.  Encompassing and Specificity , 1996, Econometric Theory.

[32]  Douglas R. White,et al.  Multivariate Modeling with Interdependent Network Data , 1982 .

[33]  K. Ord Estimation Methods for Models of Spatial Interaction , 1975 .

[34]  David F. Hendry,et al.  Econometrics-Alchemy or Science? , 1980 .

[35]  Robert Haining,et al.  MODELING INTRAURBAN PRICE COMPETITION: AN EXAMPLE OF GASOLINE PRICING* , 1983 .

[36]  Luc Anselin,et al.  Model Validation in Spatial Econometrics: A Review and Evaluation of Alternative Approaches , 1988 .

[37]  A Bayesian note on competing correlation structures in the dynamic linear regression model , 1992 .

[38]  Peter E. Rossi,et al.  A bayesian approach to testing the arbitrage pricing theory , 1991 .

[39]  Grayham E. Mizon,et al.  The encompassing approach in econometrics , 1984 .

[40]  Robert A. Connolly A posterior odds analysis of the weekend effect , 1991 .

[41]  A. D. Cliff,et al.  Model Building and the Analysis of Spatial Pattern in Human Geography , 1975 .

[42]  Kenneth M Gaver,et al.  Discriminating among Linear Models with Interdependent Disturbances , 1976 .

[43]  J. Cheverud,et al.  THE QUANTITATIVE ASSESSMENT OF PHYLOGENETIC CONSTRAINTS IN COMPARATIVE ANALYSES: SEXUAL DIMORPHISM IN BODY WEIGHT AMONG PRIMATES , 1985, Evolution; international journal of organic evolution.

[44]  Peter E. Rossi Comparison of Alternative Functional Forms in Production , 1985 .

[45]  Maxwell L. King,et al.  Testing for autoregressive against moving average errors in the linear regression model , 1983 .

[46]  D. Cox Tests of Separate Families of Hypotheses , 1961 .

[47]  A. Zellner,et al.  Analysis of Distributed Lag Models with Application to Consumption Function Estimation , 1970 .

[48]  P. Doreian Estimating Linear Models with Spatially Distributed Data , 1981 .

[49]  Lw Hepple,et al.  Bayesian analysis of the linear model with spatial dependence , 1979 .

[50]  Lw Hepple,et al.  Bayesian Techniques in Spatial and Network Econometrics: 2. Computational Methods and Algorithms , 1995 .

[51]  James G. MacKinnon,et al.  Model specification tests against non-nested alternatives , 1983 .

[52]  Douglas R. White,et al.  Sexual Division of Labor in African Agriculture: A Network Autocorrelation Analysis , 1981 .