A spiking neural network model of the midbrain superior colliculus that generates saccadic motor commands

Single-unit recordings suggest that the midbrain superior colliculus (SC) acts as an optimal controller for saccadic gaze shifts. The SC is proposed to be the site within the visuomotor system where the nonlinear spatial-to-temporal transformation is carried out: the population encodes the intended saccade vector by its location in the motor map (spatial), and its trajectory and velocity by the distribution of firing rates (temporal). The neurons’ burst profiles vary systematically with their anatomical positions and intended saccade vectors, to account for the nonlinear main-sequence kinematics of saccades. Yet, the underlying collicular mechanisms that could result in these firing patterns are inaccessible to current neurobiological techniques. Here, we propose a simple spiking neural network model that reproduces the spike trains of saccade-related cells in the intermediate and deep SC layers during saccades. The model assumes that SC neurons have distinct biophysical properties for spike generation that depend on their anatomical position in combination with a center–surround lateral connectivity. Both factors are needed to account for the observed firing patterns. Our model offers a basis for neuronal algorithms for spatiotemporal transformations and bio-inspired optimal controllers.

[1]  M. Behan,et al.  Intrinsic circuitry in the deep layers of the cat superior colliculus , 1996, Visual Neuroscience.

[2]  Kenji Doya,et al.  The Mechanism of Saccade Motor Pattern Generation Investigated by a Large-Scale Spiking Neuron Model of the Superior Colliculus , 2013, PloS one.

[3]  P. Fitts The information capacity of the human motor system in controlling the amplitude of movement. , 1954, Journal of experimental psychology.

[4]  Romain Brette,et al.  Brian: A Simulator for Spiking Neural Networks in Python , 2008, Frontiers Neuroinformatics.

[5]  P. Fells Basic Mechanisms of Ocular Motility and their Clinical Implications , 1976 .

[6]  Kuniharu Arai,et al.  A model of the saccade-generating system that accounts for trajectory variations produced by competing visual stimuli , 2004, Biological Cybernetics.

[7]  A. S. Ramoa,et al.  Intrinsic circuitry of the superior colliculus: pharmacophysiological identification of horizontally oriented inhibitory interneurons. , 1998, Journal of neurophysiology.

[8]  T. Kitama,et al.  An Anatomical Substrate for the Spatiotemporal Transformation , 1998, The Journal of Neuroscience.

[9]  W. C. Hall,et al.  A Circuit Model for Saccadic Suppression in the Superior Colliculus , 2011, The Journal of Neuroscience.

[10]  D. Munoz,et al.  Lateral inhibitory interactions in the intermediate layers of the monkey superior colliculus. , 1998, Journal of neurophysiology.

[11]  L. Stark,et al.  The main sequence, a tool for studying human eye movements , 1975 .

[12]  J. Theeuwes,et al.  Lateral interactions in the superior colliculus produce saccade deviation in a neural field model , 2012, Vision Research.

[13]  Daniel M. Wolpert,et al.  Making smooth moves , 2022 .

[14]  A. Fuchs,et al.  Evidence that the superior colliculus participates in the feedback control of saccadic eye movements. , 2002, Journal of neurophysiology.

[15]  D. Robinson Eye movements evoked by collicular stimulation in the alert monkey. , 1972, Vision research.

[16]  A. J. van Opstal,et al.  Experimental test of two models for the generation of oblique saccades , 2004, Experimental Brain Research.

[17]  Ning Qian,et al.  An optimization principle for determining movement duration. , 2006, Journal of neurophysiology.

[18]  M. Schlag-Rey,et al.  How the frontal eye field can impose a saccade goal on superior colliculus neurons. , 1992, Journal of neurophysiology.

[19]  R. V. van Beers Saccadic Eye Movements Minimize the Consequences of Motor Noise , 2008, PloS one.

[20]  Romain Brette,et al.  Neuroinformatics Original Research Article Brian: a Simulator for Spiking Neural Networks in Python , 2022 .

[21]  A. John van Opstal,et al.  Linear ensemble-coding in midbrain superior colliculus specifies the saccade kinematics , 2008, Biological Cybernetics.

[22]  Jonathan Touboul,et al.  Dynamics and bifurcations of the adaptive exponential integrate-and-fire model , 2008, Biological Cybernetics.

[23]  D. Sparks,et al.  Site and parameters of microstimulation: evidence for independent effects on the properties of saccades evoked from the primate superior colliculus. , 1996, Journal of neurophysiology.

[24]  A. Berthoz,et al.  From brainstem to cortex: Computational models of saccade generation circuitry , 2005, Progress in Neurobiology.

[25]  R. Klein,et al.  A Model of Saccade Initiation Based on the Competitive Integration of Exogenous and Endogenous Signals in the Superior Colliculus , 2001, Journal of Cognitive Neuroscience.

[26]  S. Gielen,et al.  A quantitative analysis of generation of saccadic eye movements by burst neurons. , 1981, Journal of neurophysiology.

[27]  A. Opstal,et al.  A nonlinear model for collicular spatial interactions underlying the metrical properties of electrically elicited saccades , 2004, Biological Cybernetics.

[28]  A. J. Van Opstal,et al.  Comparison of saccades evoked by visual stimulation and collicular electrical stimulation in the alert monkey , 2004, Experimental Brain Research.

[29]  T. Isa,et al.  Local Excitatory Network and NMDA Receptor Activation Generate a Synchronous and Bursting Command from the Superior Colliculus , 2003, The Journal of Neuroscience.

[30]  A. John van Opstal,et al.  Optimal Control of Saccades by Spatial-Temporal Activity Patterns in the Monkey Superior Colliculus , 2012, PLoS Comput. Biol..

[31]  R. Reid,et al.  Direct Activation of Sparse, Distributed Populations of Cortical Neurons by Electrical Microstimulation , 2009, Neuron.

[32]  M. Segraves,et al.  The relationship of monkey frontal eye field activity to saccade dynamics. , 1993, Journal of neurophysiology.

[33]  Robert A. Marino,et al.  Distinct local circuit properties of the superficial and intermediate layers of the rodent superior colliculus , 2014, The European journal of neuroscience.

[34]  P. May,et al.  Comparison of the distribution and somatodendritic morphology of tectotectal neurons in the cat and monkey , 1998, Visual Neuroscience.

[35]  H S Pennypacker,et al.  On Behavioral Analysis , 1981, The Behavior analyst.

[36]  F. Ottes,et al.  Visuomotor fields of the superior colliculus: A quantitative model , 1986, Vision Research.

[37]  N. J. Gandhi,et al.  The relative impact of microstimulation parameters on movement generation. , 2012, Journal of neurophysiology.

[38]  H. Kornhuber,et al.  Natural and drug-induced variations of velocity and duration of human saccadic eye movements: Evidence for a control of the neural pulse generator by local feedback , 2004, Biological Cybernetics.

[39]  Daniel M. Wolpert,et al.  The Main Sequence of Saccades Optimizes Speed-accuracy Trade-off , 2006, Biological Cybernetics.

[40]  J. V. Van Gisbergen,et al.  Skewness of saccadic velocity profiles: a unifying parameter for normal and slow saccades. , 1987, Vision research.

[41]  A. J. Van Opstal,et al.  Skewness of saccadic velocity profiles: A unifying parameter for normal and slow saccades , 1987, Vision Research.

[42]  W. C. Hall,et al.  Exploring the superior colliculus in vitro. , 2009, Journal of neurophysiology.

[43]  A. Schierwagen,et al.  Passive membrane properties, afterpotentials and repetitive firing of superior colliculus neurons studied in the anesthetized cat , 2004, Experimental Brain Research.

[44]  A. K. Moschovakis,et al.  The local loop of the saccadic system closes downstream of the superior colliculus , 2006, Neuroscience.

[45]  R H Wurtz,et al.  Activity of neurons in monkey superior colliculus during interrupted saccades. , 1996, Journal of neurophysiology.

[46]  R. Wurtz,et al.  Modification of saccadic eye movements by GABA-related substances. II. Effects of muscimol in monkey substantia nigra pars reticulata. , 1985, Journal of neurophysiology.

[47]  A. V. van Opstal,et al.  Dynamic ensemble coding of saccades in the monkey superior colliculus. , 2006, Journal of neurophysiology.

[48]  Wulfram Gerstner,et al.  Adaptive exponential integrate-and-fire model as an effective description of neuronal activity. , 2005, Journal of neurophysiology.

[49]  Thomas P. Trappenberg,et al.  Spatial Interactions in the Superior Colliculus Predict Saccade Behavior in a Neural Field Model , 2012, Journal of Cognitive Neuroscience.

[50]  R A Abrams,et al.  Speed and accuracy of saccadic eye movements: characteristics of impulse variability in the oculomotor system. , 1989, Journal of experimental psychology. Human perception and performance.

[51]  A J Van Opstal,et al.  Blink-perturbed saccades in monkey. II. Superior colliculus activity. , 2000, Journal of neurophysiology.

[52]  C. Scudder A new local feedback model of the saccadic burst generator. , 1988, Journal of neurophysiology.

[53]  A J Van Opstal,et al.  Blink-perturbed saccades in monkey. I. Behavioral analysis. , 2000, Journal of neurophysiology.