Dynamics of a hysteretic neuron model

[1]  Benlian Xu,et al.  Ant colony optimization for bearings-only maneuvering target tracking in sensors network , 2007 .

[2]  J. Lam,et al.  Delay-dependent exponential stability for a class of neural networks with time delays , 2005 .

[3]  Y. Takefuji,et al.  An artificial hysteresis binary neuron: a model suppressing the oscillatory behaviors of neural dynamics , 1991, Biological Cybernetics.

[4]  Ju H. Park,et al.  Delay-dependent criterionfor asymptotic stability of a class of neutral equations , 2004, Appl. Math. Lett..

[5]  Qing-Long Han,et al.  Stability criteria for a class of linear neutral systems with time-varying discrete and distributed delays , 2003, IMA J. Math. Control. Inf..

[6]  E. Fridman,et al.  Delay-dependent stability and H ∞ control: Constant and time-varying delays , 2003 .

[7]  E. Fridman Stability of linear descriptor systems with delay: a Lyapunov-based approach , 2002 .

[8]  Emilia Fridman,et al.  New Lyapunov-Krasovskii functionals for stability of linear retarded and neutral type systems , 2001, Syst. Control. Lett..

[9]  S. Niculescu Delay Effects on Stability: A Robust Control Approach , 2001 .

[10]  Silviu-Iulian Niculescu,et al.  On delay-dependent stability under model transformations of some neutral linear systems , 2001 .

[11]  R. Agarwal,et al.  Asymptotic stability of certain neutral differential equations , 2000 .

[12]  Hassan A. El-Morshedy,et al.  Nonoscillation, oscillation and convergence of a class of neutral equations , 2000 .

[13]  Silviu-Iulian Niculescu,et al.  Additional dynamics in transformed time-delay systems , 1999, Proceedings of the 38th IEEE Conference on Decision and Control (Cat. No.99CH36304).

[14]  Kenya Jin'no,et al.  Analysis of bifurcation phenomena in a 3-cells hysteresis neural network , 1999 .

[15]  Jean-Pierre Richard,et al.  Stability of some linear systems with delays , 1999, IEEE Trans. Autom. Control..

[16]  Kolmanovskii,et al.  Introduction to the Theory and Applications of Functional Differential Equations , 1999 .

[17]  V. Kolmanovskii,et al.  On the Liapunov-Krasovskii functionals for stability analysis of linear delay systems , 1999 .

[18]  K. Gopalsamy,et al.  Global Hopf-bifurcation in a neural netlet , 1998, Appl. Math. Comput..

[19]  Jerry M. Mendel,et al.  The hysteretic Hopfield neural network , 1998, 1998 IEEE International Joint Conference on Neural Networks Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98CH36227).

[20]  E. Yaz Linear Matrix Inequalities In System And Control Theory , 1998, Proceedings of the IEEE.

[21]  K. Gopalsamy,et al.  Convergence under dynamical thresholds with delays , 1997, IEEE Trans. Neural Networks.

[22]  K. Gopalsamy,et al.  Delay induced periodicity in a neural netlet of excitation and inhibition , 1996 .

[23]  Toshimichi Saito,et al.  Obtaining an ideal associative memory by means of a simple hysteresis network , 1995 .

[24]  T. Katayama,et al.  A generalized Lyapunov theorem for descriptor system , 1995 .

[25]  Stephen P. Boyd,et al.  Linear Matrix Inequalities in Systems and Control Theory , 1994 .

[26]  Jack K. Hale,et al.  Introduction to Functional Differential Equations , 1993, Applied Mathematical Sciences.

[27]  V. Kolmanovskii,et al.  Applied Theory of Functional Differential Equations , 1992 .

[28]  Dao-Yi Xu,et al.  Integro-differential equations and delay integral inequalities , 1992 .

[29]  T. Saito,et al.  Analysis and synthesis of a continuous-time hysteresis neural network , 1992, [Proceedings] 1992 IEEE International Symposium on Circuits and Systems.

[30]  K. Gopalsamy Stability and Oscillations in Delay Differential Equations of Population Dynamics , 1992 .

[31]  L. Wang,et al.  Synchronous neural networks of nonlinear threshold elements with hysteresis. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[32]  Yasuji Sawada,et al.  Associative memory network composed of neurons with hysteretic property , 1990, Neural Networks.

[33]  J. Keeler,et al.  Noise in neural networks: thresholds, hysteresis, and neuromodulation of signal-to-noise. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[34]  G W Hoffmann,et al.  A neural network model based on the analogy with the immune system. , 1986, Journal of theoretical biology.

[35]  V. Kolmanovskii,et al.  Stability of Functional Differential Equations , 1986 .

[36]  R. D. Driver,et al.  Ordinary and Delay Differential Equations , 1977 .

[37]  John L. Casti,et al.  Introduction to the theory and application of differential equations with deviating arguments , 1973 .

[38]  W. Walter Differential and Integral Inequalities , 1970 .

[39]  Richard Bellman,et al.  Differential-Difference Equations , 1967 .

[40]  H. Antosiewicz,et al.  Differential Equations: Stability, Oscillations, Time Lags , 1967 .

[41]  J. Hale,et al.  Stability of Motion. , 1964 .