One-Dimensional Numerical Algorithms for Gradient Flows in the p-Wasserstein Spaces

We numerically approximate, on the real line, solutions to a large class of parabolic partial differential equations which are “gradient flows” of some energy functionals with respect to the Lp-Wasserstein metrics for all p>1. Our method relies on variational principles involving the optimal transport problem with general strictly convex cost functions.

[1]  Kyōto Daigaku. Sūgakuka Lectures in mathematics , 1968 .

[2]  Y. Brenier Polar Factorization and Monotone Rearrangement of Vector-Valued Functions , 1991 .

[3]  W. Gangbo,et al.  Optimal maps in Monge's mass transport problem , 1995 .

[4]  D. Kinderlehrer,et al.  THE VARIATIONAL FORMULATION OF THE FOKKER-PLANCK EQUATION , 1996 .

[5]  Felix Otto,et al.  Doubly Degenerate Diffusion Equations as Steepest Descent , 1996 .

[6]  D. Kinderlehrer,et al.  Approximation of Parabolic Equations Using the Wasserstein Metric , 1999 .

[7]  F. Otto THE GEOMETRY OF DISSIPATIVE EVOLUTION EQUATIONS: THE POROUS MEDIUM EQUATION , 2001 .

[8]  M. Agueh Existence of solutions to degenerate parabolic equations via the Monge-Kantorovich theory. , 2002, math/0309410.

[9]  C. Villani Topics in Optimal Transportation , 2003 .

[10]  A. Tudorascu,et al.  Variational Principle for General Diffusion Problems , 2004 .

[11]  L. Ambrosio,et al.  Gradient Flows: In Metric Spaces and in the Space of Probability Measures , 2005 .

[12]  C. Villani,et al.  Contractions in the 2-Wasserstein Length Space and Thermalization of Granular Media , 2006 .

[13]  A. Tudorascu On the Jordan–Kinderlehrer–Otto variational scheme and constrained optimization in the Wasserstein metric , 2008 .

[14]  Martial Agueh,et al.  Rates of decay to equilibria for p-Laplacian type equations , 2008 .

[15]  J. A. Carrillo,et al.  Numerical Simulation of Diffusive and Aggregation Phenomena in Nonlinear Continuity Equations by Evolving Diffeomorphisms , 2009, SIAM J. Sci. Comput..

[16]  Boualem Khouider,et al.  An efficient numerical algorithm for the L2 optimal transport problem with applications to image processing , 2010, 1009.6039.

[17]  Martial Agueh,et al.  Finsler structure in the p-Wasserstein space and gradient flows , 2012 .