One-Dimensional Numerical Algorithms for Gradient Flows in the p-Wasserstein Spaces
暂无分享,去创建一个
[1] Kyōto Daigaku. Sūgakuka. Lectures in mathematics , 1968 .
[2] Y. Brenier. Polar Factorization and Monotone Rearrangement of Vector-Valued Functions , 1991 .
[3] W. Gangbo,et al. Optimal maps in Monge's mass transport problem , 1995 .
[4] D. Kinderlehrer,et al. THE VARIATIONAL FORMULATION OF THE FOKKER-PLANCK EQUATION , 1996 .
[5] Felix Otto,et al. Doubly Degenerate Diffusion Equations as Steepest Descent , 1996 .
[6] D. Kinderlehrer,et al. Approximation of Parabolic Equations Using the Wasserstein Metric , 1999 .
[7] F. Otto. THE GEOMETRY OF DISSIPATIVE EVOLUTION EQUATIONS: THE POROUS MEDIUM EQUATION , 2001 .
[8] M. Agueh. Existence of solutions to degenerate parabolic equations via the Monge-Kantorovich theory. , 2002, math/0309410.
[9] C. Villani. Topics in Optimal Transportation , 2003 .
[10] A. Tudorascu,et al. Variational Principle for General Diffusion Problems , 2004 .
[11] L. Ambrosio,et al. Gradient Flows: In Metric Spaces and in the Space of Probability Measures , 2005 .
[12] C. Villani,et al. Contractions in the 2-Wasserstein Length Space and Thermalization of Granular Media , 2006 .
[13] A. Tudorascu. On the Jordan–Kinderlehrer–Otto variational scheme and constrained optimization in the Wasserstein metric , 2008 .
[14] Martial Agueh,et al. Rates of decay to equilibria for p-Laplacian type equations , 2008 .
[15] J. A. Carrillo,et al. Numerical Simulation of Diffusive and Aggregation Phenomena in Nonlinear Continuity Equations by Evolving Diffeomorphisms , 2009, SIAM J. Sci. Comput..
[16] Boualem Khouider,et al. An efficient numerical algorithm for the L2 optimal transport problem with applications to image processing , 2010, 1009.6039.
[17] Martial Agueh,et al. Finsler structure in the p-Wasserstein space and gradient flows , 2012 .