Exponential Time Algorithms for the Minimum Dominating Set Problem on Some Graph Classes
暂无分享,去创建一个
[1] Fabrizio Grandoni,et al. A note on the complexity of minimum dominating set , 2006, J. Discrete Algorithms.
[2] J. Mark Keil. The Complexity of Domination Problems in Circle Graphs , 1993, Discret. Appl. Math..
[3] Alan A. Bertossi,et al. Dominating Sets for Split and Bipartite Graphs , 1984, Inf. Process. Lett..
[4] Kellogg S. Booth,et al. Dominating Sets in Chordal Graphs , 1982, SIAM J. Comput..
[5] Rolf Niedermeier,et al. Fixed Parameter Algorithms for DOMINATING SET and Related Problems on Planar Graphs , 2002, Algorithmica.
[6] Gerhard J. Woeginger,et al. Exact (Exponential) Algorithms for the Dominating Set Problem , 2004, WG.
[7] Ton Kloks. Treewidth of Circle Graphs , 1996, Int. J. Found. Comput. Sci..
[8] Fabrizio Grandoni,et al. Some New Techniques in Design and Analysis of Exact (Exponential) Algorithms , 2005, Bull. EATCS.
[9] Ingo Schiermeyer. Problems remaining NP-complette for sparse or dense graphs , 1995, Discuss. Math. Graph Theory.
[10] Dimitrios M. Thilikos,et al. Graphs with Branchwidth at Most Three , 1999, J. Algorithms.
[11] Gerhard J. Woeginger,et al. Exact Algorithms for NP-Hard Problems: A Survey , 2001, Combinatorial Optimization.
[12] M. Golumbic. Algorithmic graph theory and perfect graphs , 1980 .
[13] Fabrizio Grandoni,et al. Measure and Conquer: Domination - A Case Study , 2005, ICALP.
[14] Fedor V. Fomin,et al. Reports in Informatics , 2005 .
[15] Paul D. Seymour,et al. Graph Minors. II. Algorithmic Aspects of Tree-Width , 1986, J. Algorithms.
[16] A. Brandstädt,et al. Graph Classes: A Survey , 1987 .