Anatomy of a young giant component in the random graph

We provide a complete description of the giant component of the Erdős-Renyi random graph \documentclass{article} \usepackage{mathrsfs} \usepackage{amsmath} \pagestyle{empty} \begin{document} \begin{align*}{\mathcal{G}}(n,p)\end{align*} \end{document} **image** as soon as it emerges from the scaling window, i.e., for p = (1+e)/n where e3n →∞ and e = o(1). Our description is particularly simple for e = o(n-1/4), where the giant component \documentclass{article} \usepackage{mathrsfs} \usepackage{amsmath} \pagestyle{empty} \begin{document} \begin{align*}{\mathcal{C}_1}\end{align*} \end{document} **image** is contiguous with the following model (i.e., every graph property that holds with high probability for this model also holds w.h.p. for \documentclass{article} \usepackage{mathrsfs} \usepackage{amsmath} \pagestyle{empty} \begin{document} \begin{align*}{\mathcal{C}_1}\end{align*} \end{document} **image** ). Let Z be normal with mean \documentclass{article} \usepackage{mathrsfs} \usepackage{amsmath} \pagestyle{empty} \begin{document} \begin{align*}\frac{2}{3} \varepsilon^3 n\end{align*} \end{document} **image** and variance e3n, and let \documentclass{article} \usepackage{mathrsfs} \usepackage{amsmath} \pagestyle{empty} \begin{document} \begin{align*}\mathcal{K}\end{align*} \end{document} **image** be a random 3-regular graph on \documentclass{article} \usepackage{mathrsfs} \usepackage{amsmath} \pagestyle{empty} \begin{document} \begin{align*}2\left\lfloor Z\right\rfloor\end{align*} \end{document} **image** vertices. Replace each edge of \documentclass{article} \usepackage{mathrsfs} \usepackage{amsmath} \pagestyle{empty} \begin{document} \begin{align*}\mathcal{K}\end{align*} \end{document} **image** by a path, where the path lengths are i.i.d. geometric with mean 1/e. Finally, attach an independent Poisson( 1-e )-Galton-Watson tree to each vertex. A similar picture is obtained for larger e = o(1), in which case the random 3-regular graph is replaced by a random graph with Nk vertices of degree k for k ≥ 3, where Nk has mean and variance of order ekn. This description enables us to determine fundamental characteristics of the supercritical random graph. Namely, we can infer the asymptotics of the diameter of the giant component for any rate of decay of e, as well as the mixing time of the random walk on \documentclass{article} \usepackage{mathrsfs} \usepackage{amsmath} \pagestyle{empty} \begin{document} \begin{align*}{\mathcal{C}_1}\end{align*} \end{document} **image** . © 2010 Wiley Periodicals, Inc. Random Struct. Alg., 39, 139–178, 2011 © 2011 Wiley Periodicals, Inc.

[1]  R. Durrett Probability: Theory and Examples , 1993 .

[2]  David Aldous,et al.  Brownian excursions, critical random graphs and the multiplicative coalescent , 1997 .

[3]  Nicholas C. Wormald,et al.  Almost All Cubic Graphs Are Hamiltonian , 1992, Random Struct. Algorithms.

[4]  Y. Peres,et al.  Mixing time of near-critical random graphs , 2009, 0908.3870.

[5]  David Aldous,et al.  The Continuum Random Tree III , 1991 .

[6]  Tomasz Luczak,et al.  Component Behavior Near the Critical Point of the Random Graph Process , 1990, Random Struct. Algorithms.

[7]  B. Pittel,et al.  The structure of a random graph at the point of the phase transition , 1994 .

[8]  G. Hooghiemstra,et al.  First passage percolation on random graphs with finite mean degrees , 2009, 0903.5136.

[9]  Vijaya Ramachandran,et al.  The diameter of sparse random graphs , 2007, Random Struct. Algorithms.

[10]  P. Erdos,et al.  On the evolution of random graphs , 1984 .

[11]  N. Alon,et al.  The Probabilistic Method: Alon/Probabilistic , 2008 .

[12]  Yuval Peres,et al.  Diameters in Supercritical Random Graphs Via First Passage Percolation , 2009, Combinatorics, Probability and Computing.

[13]  Alan M. Frieze,et al.  Random graphs , 2006, SODA '06.

[14]  Svante Janson,et al.  Random graphs , 2000, ZOR Methods Model. Oper. Res..

[15]  Béla Bollobás,et al.  A Probabilistic Proof of an Asymptotic Formula for the Number of Labelled Regular Graphs , 1980, Eur. J. Comb..

[16]  N. Linial,et al.  Expander Graphs and their Applications , 2006 .

[17]  Bruce A. Reed,et al.  The evolution of the mixing rate of a simple random walk on the giant component of a random graph , 2008, Random Struct. Algorithms.

[18]  R. Otter The Multiplicative Process , 1949 .

[19]  Noga Alon,et al.  The Probabilistic Method , 2015, Fundamentals of Ramsey Theory.

[20]  Jim Pitman,et al.  Enumerations of trees and forests related to branching processes and random walks , 1997, Microsurveys in Discrete Probability.

[21]  Jeong Han Kim,et al.  Finding cores of random 2-SAT formulae via Poisson cloning , 2008, ArXiv.

[22]  Y. Peres,et al.  Critical random graphs: Diameter and mixing time , 2007, math/0701316.

[23]  Nicholas C. Wormald,et al.  Counting connected graphs inside-out , 2005, J. Comb. Theory, Ser. B.

[24]  Jeong Han Kim,et al.  Poisson Cloning Model for Random Graphs , 2008, 0805.4133.

[25]  Tomasz Łuczak Component behavior near the critical point of the random graph process , 1990 .

[26]  Jim Pitman,et al.  Tree-valued Markov chains derived from Galton-Watson processes , 1998 .

[27]  École d'été de probabilités de Saint-Flour,et al.  École d'été de probabilités de Saint Flour XIV, 1984 , 1986 .

[28]  Tomasz Luczak,et al.  Cycles in a Random Graph Near the Critical Point , 1991, Random Struct. Algorithms.

[29]  W. T. Gowers,et al.  RANDOM GRAPHS (Wiley Interscience Series in Discrete Mathematics and Optimization) , 2001 .

[30]  H. Kesten Aspects of first passage percolation , 1986 .

[31]  Remco van der Hofstad,et al.  An Elementary Proof of the Hitting Time Theorem , 2008, Am. Math. Mon..